[1]许荣斌 谢莹 吴建国.基于化合物库测试的gSpan算法[J].计算机技术与发展,2007,(10):58-60.
 XU Rong-bin,XIE Ying,WU Jian-guo.The gSpan Algorithm Based on Compound- Library Testing[J].,2007,(10):58-60.
点击复制

基于化合物库测试的gSpan算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年10期
页码:
58-60
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
The gSpan Algorithm Based on Compound- Library Testing
文章编号:
1673-629X(2007)10-0058-03
作者:
许荣斌 谢莹 吴建国
安徽大学计算智能与信号处理教育部重点实验室
Author(s):
XU Rong-binXIE YingWU Jian-guo
Ministry of Education Key Laboratory of Intelligent Computing & Signal Processing, Anhui University
关键词:
gSpan化合物库频繁子图深度优先搜索
Keywords:
gSpan compound - library frequent subgraphs DIS
分类号:
TP311
文献标志码:
A
摘要:
gSpan算法是一种基于频繁图的数据挖掘算法。该算法基于无候选人产生的频繁子图,采用深度优先搜索策略挖掘频繁连接子图。由于其设计结构具有连续性以及无候选人产生,算法的性能得以提高,在执行速度上可以达到前人算法如FSG算法的15~100倍。基于化合物库Chemical_340测试发现,该算法能够以卓越性能有效挖掘频繁子图。该算法可以应用在搜索具有相同子结构的化合物研究中,对相关领域研究发展具有重要意义
Abstract:
Introduces a graph - based substructure pattern mining algorithm called gSpan, which discovers frequent substructures without candidate generation and adopts the depth- first search strategy to mine frequent connected subgraphs efficiently. Its performance is enhanced because the continuous design and non - candidate. When it is applied on the chemical compound - library Chemical_ 340, gSpan substantially outperforms previous algorithms such as FSG, sometimes by an order of magnitude, gSpan can be applied in the research of finding compounds with same substructure, it is very important to related areas

备注/Memo

备注/Memo:
国家科委创新基金资助项目(06C26213401229)许荣斌(1981-),男,安徽黄山人,硕士研究生,研究领域为嵌入式系统设计;吴建国,教授,博士生导师,研究领域为中文信息处理、嵌入式系统IDA
更新日期/Last Update: 1900-01-01