[1]但志平 郑胜.最小二乘向量机在说话人识别中的应用[J].计算机技术与发展,2007,(05):30-32.
 DAN Zhi-ping,ZHENG Sheng.Application of LS - SVM in Speaker Recognition[J].,2007,(05):30-32.
点击复制

最小二乘向量机在说话人识别中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年05期
页码:
30-32
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Application of LS - SVM in Speaker Recognition
文章编号:
1673-629X(2007)05-0030-03
作者:
但志平12 郑胜12
[1]华中科技大学电信系[2]三峡大学电气信息学院
Author(s):
DAN Zhi-ping ZHENG Sheng
[1]Electricity and Info. Dept. ,Huazhong University of Science and Technology[2]Electricity & Info. College,Three Gorges University
关键词:
说话人识别最小二乘向量机核函数线性预测
Keywords:
speaker recognition least square support vector machineskernel function linear predictive coding
分类号:
TP391.42
文献标志码:
A
摘要:
说话人识别是语音识别的一种,是当前的研究热点之一。而基于统计学习理论的支持向量机(SVM)方法是一种新的机器学习算法,已成为机器学习研究的热点。讨论了一种改进的SVM即最小二乘向量机(LS-SVM)的方法进行说话人识别研究。研究表明,基于LS—SVM的说话人识别比传统的SVM说话人识别计算复杂度小、效率更高、对说话人识别有很强的适应性
Abstract:
Speaker recognition is regarded as a kind of voice recognition. It is one of the current research hotspots. The support vector machines(SVM) based on ethe statistical learning theory is a new machine learning algorithm as the hotspots of machine learning research. An improved SVM,the least square support vector machines(LS - SVM) is discussed in this paper. The experimental results demonstrate that the LS - SVM- based speaker recognition is less computational complexity and more effient than the SVM- based speaker recognition. Then it has high adaptability for the speaker recognition

相似文献/References:

[1]吴庆棋 林江云.基于聚类优化GMM提高说话人识别性能的研究[J].计算机技术与发展,2009,(04):35.
 WU Qing-qi,LIN Jiang-yun.A Study on GMM Optimization with Clustering for Improving Speaker Recognition[J].,2009,(05):35.
[2]张华 裘雪红.说话人识别中LPCCEP倒谱分量的相对重要性[J].计算机技术与发展,2006,(04):67.
 ZHANG Hua,QIU Xue-hong.On the Importance of Components of LPCCEP in Speaker Recognition[J].,2006,(05):67.
[3]刘俊坤,李燕萍,凌云志.基于AutoEncoder DBN-VQ 的说话人识别系统[J].计算机技术与发展,2018,28(02):45.[doi:10.3969/j.issn.1673-629X.2018.02.]
 LIU Junkun,LI Yanping,LING Yunzhi.Speaker Recognition System Based on AutoEncoder Deep Belief Network and Vector Quantization[J].,2018,28(05):45.[doi:10.3969/j.issn.1673-629X.2018.02.]
[4]于云,周伟栋. 基于稀疏表示的鲁棒性说话人识别系统[J].计算机技术与发展,2015,25(12):41.
 YU Yun,ZHOU Wei-dong. Robust Speaker Recognition System Based on Sparse Representation[J].,2015,25(05):41.
[5]李燕,陶定元,林乐. 基于DTW模型补偿的伪装语音说话人识别研究[J].计算机技术与发展,2017,27(01):93.
 LI Yan-ping,TAO Ding-yuan,LIN Le. Study on Electronic Disguised Voice Speaker Recognition Based on DTW Model Compensation[J].,2017,27(05):93.
[6]林舒都,邵曦.基于i-vector和深度学习的说话人识别[J].计算机技术与发展,2017,27(06):66.
 LIN Shu-du,SHAO Xi. Speaker Recognition with i-vector and Deep Learning[J].,2017,27(05):66.

备注/Memo

备注/Memo:
但志平(1976-),男,湖北赤壁人,硕士,讲师,主要从事语音识别、数字图像处理等方面的研究
更新日期/Last Update: 1900-01-01