[1]张璐璐 贾瑞玉 李杰.一种基于规则的离群挖掘算法[J].计算机技术与发展,2006,(12):73-75.
 ZHANG Lu-lu,JIA Rui-yu,LI Jie.An Algorithm for Outliers Mining Based on Rule.[J].,2006,(12):73-75.
点击复制

一种基于规则的离群挖掘算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年12期
页码:
73-75
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
An Algorithm for Outliers Mining Based on Rule.
文章编号:
1673-629X(2006)12-0073-03
作者:
张璐璐 贾瑞玉 李杰
安徽大学计算机科学与技术学院
Author(s):
ZHANG Lu-lu JIA Rui-yu LI Jie
Department of Computer Science and Technology, Anhui Univ
关键词:
数据挖掘离群数据离群挖掘支持度兴趣度
Keywords:
data mining outlier data outlier mining support interest
分类号:
TP311.138
文献标志码:
A
摘要:
离群数据挖掘是指从大量数据中挖掘明显偏离、不满足一般行为模式的数据。现有的离群数据挖掘算法大多对密集的交易数据库缺乏有效的处理,文中提出了一种高效的基于规则的离群挖掘算法。该算法使用了多层最大离群支持度及最小离群兴趣度,计算1-离群条件集的幂集,并在数据结构中存储了交易标识符链表,使得扫描数据库的次数仅为一次,从而提高了挖掘的速度、效率且使得结果更具有决策意义。文中使用此算法对某一商场的部分销售数据库进行了实验,结果表明该算法能有效、迅速地发现密集数据库中的离群数据
Abstract:
Outlier mining refers to the mining of the data with obvious departure, end with no general behaviors patterns from large amounts of data. Most existing algorithms don' t have good performance when dealing with data - intensive transaction databases. This paper presents a highly efficient rule - based outlier mining algorithm. This algorithm uses multi - layer maximum outlier support and minimum outlier interest, calculates the power of 1 - outlier set, end uses linked list to store the transaction identifier in data structure. All these make the time of scanning database only once. So the mining speed and efficiency are enhanced, the result are more useful to decision -making. In this paper, an experiment using this algorithm was carried out on part of a shopping center's scales database. The result presents that this algorithm can mine data- intensive transaction database more effectively and rapidly

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(12):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(12):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(12):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(12):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(12):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(12):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(12):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(12):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(12):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(12):113.

备注/Memo

备注/Memo:
张璐璐(1983-),女,安徽阜阳人,硕士研究生.研究方向为数据挖掘、机器学习
更新日期/Last Update: 1900-01-01