[1]洪菁 陈强 刘惠彬.一种基于改进粗糙集模型的归纳学习方法[J].计算机技术与发展,2006,(10):32-34.
 HONG Jing,CHEN Oiang,LIU Hui-bin.An Inductive Learning Approach Based on Modified Rough Set[J].,2006,(10):32-34.
点击复制

一种基于改进粗糙集模型的归纳学习方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年10期
页码:
32-34
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
An Inductive Learning Approach Based on Modified Rough Set
文章编号:
1673-629X(2006)10-0032-03
作者:
洪菁 陈强 刘惠彬
上海工程技术大学计算中心
Author(s):
HONG Jing CHEN Oiang LIU Hui-bin
Computer Center, Shanghai University of Engineering Science
关键词:
离散化粗糙集模糊相似关系属性重要度归纳学习
Keywords:
discretization rough setfuzzy similarity relation attribute significanceinductive learning
分类号:
TP18
文献标志码:
A
摘要:
对传统的粗糙集理论进行了扩展,提出了一种改进的粗糙集归纳学习方法。一方面,针对连续属性离散化,利用模糊集理论对连续属性进行模糊化,再根据模糊贴近度构造模糊相似矩阵,并用k-w方法粗略评估各连续属性的重要度,建立基于模糊相似关系的划分,最终生成相容的决策表。另一方面,针对解决最优属性的选择问题,提出一种加权求和的属性重要度定义。基于以上模型开发了一个原型系统,并以一个工程实例验证了此方法的有效性
Abstract:
In this paper,an inductive learning approach based on modified rough set is proposed. Firstly, the continuous attributes in the decision table are fuzzified with the proper fuzzy membership functions,and the fuzzy similar matrix of the attributes is constructed with the fuzzy degree of nearness, then the k-w method is applied to evaluate the relative importance of every continuous attribute. The continuous decision table is discretized into a compatible table based on the fuzzy similarity relation. Secondly, an improved definition of the attribute significance based on the weighed sum is proposed, A prototype system based on the proposed approach is developed, Finally, an engineering example proves the effectiveness and feasibility of the propused method

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(10):5.
[2]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(10):232.
[3]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(10):136.
[4]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].,2008,(10):158.
[5]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].,2009,(10):107.
[6]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].,2009,(10):178.
[7]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].,2009,(10):17.
[8]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(10):67.
[9]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].,2009,(10):97.
[10]单雪红 吴涛[] 徐文婷[].基于粗糙集的石油安全预警规则提取[J].计算机技术与发展,2009,(01):251.
 SHAN Xue-hong,WU Tao[],XU Wen-ting[].Rules Set of China Oil Security Early Warning Based on Rough Set[J].,2009,(10):251.
[11]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(10):12.
[12]王伟 高亮 吴涛.一种基于模糊聚类的离散化方法[J].计算机技术与发展,2008,(03):53.
 WANG Wei,GAO Liang,WU Tao.Discretization of Continuous Attributes Based on Fuzzy Cluster[J].,2008,(10):53.
[13]鄂旭[],杨健[],王欣铨[],等. 水产品安全信息系统中属性离散化方法研究[J].计算机技术与发展,2014,24(07):178.
 E Xu[],YANG Jian[],WANG Xin-quan[],et al. Research on Discretization Method in Aquatic Product Safety Information System[J].,2014,24(10):178.

备注/Memo

备注/Memo:
国家“八六三”计划资助项目(2002AA134020);上海市高校青年教师科研专项基金(05XPYQ45)洪菁(1973-),女,江苏人,助教,硕士,主要从事智能信息处理、数据挖掘方面的研究
更新日期/Last Update: 1900-01-01