[1]陈学进.数据挖掘中聚类分析的研究[J].计算机技术与发展,2006,(09):44-45.
 CHEN Xue-jin.Research of Cluster Analysis in Data Mining[J].,2006,(09):44-45.
点击复制

数据挖掘中聚类分析的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年09期
页码:
44-45
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research of Cluster Analysis in Data Mining
文章编号:
1673-629X(2006)09-0044-02
作者:
陈学进12
[1]合肥工业大学计算机与信息学院[2]安徽工业大学计算机学院
Author(s):
CHEN Xue-jin
[1]Computer and Information College of Hefei University of Technology[2]Computer College, Anhui University of Technology
关键词:
数据挖掘聚类分析客户行为
Keywords:
data miningcluster analysis customer action
分类号:
TP311.13
文献标志码:
A
摘要:
聚类分析是由若干个模式组成的,它在数据挖掘中的地位越来越重要。文中阐述了数据挖掘中聚类分析的概念、方法及应用,并通过引用一个用客户交易数据统计出每个客户的交易情况的例子,根据客户行为进行聚类。通过数据挖掘聚类分析,可以及时了解经营状况、资金情况、利润情况、客户群分布等重要的信息。对客户状态、交易行为、自然属性和其他信息进行综合分析,细分客户群,确定核心客户。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果对其进行关联分析,可为协助各种有效的方案,开展针对性的服务
Abstract:
Cluster analysis is made up of patterns, and becoming increasingly essential in data mining field. This paper briefly introduces the basic concept, means and application of cluster analysis discussing about cluster analysis by using a case of customer transaction. In order to know about much imoport information of running, funds, profits and customers. And analyze state of client, bargaining action,naturaless attribute and other information, subdivide customer groups and fix on core client. By using various methods of cluster analysis, it is effective project to develop pertinence service

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(09):143.
[2]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(09):235.
[3]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(09):114.
[4]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(09):229.
[5]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(09):93.
[6]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(09):105.
[7]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(09):84.
[8]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(09):109.
[9]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(09):113.
[10]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(09):126.
[11]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(09):120.
[12]徐仰彬 刘志镜.基于DBSCAN的簇共享对象的处理办法[J].计算机技术与发展,2007,(07):38.
 XU Yang-bin,LIU Zhi-jing.A DBSCAN - Based Algorithm for Boundary Object of Cluster[J].,2007,(09):38.
[13]刘犇 毛燕琴 沈苏彬.一种基于数据挖掘技术的入侵检测方法的设计[J].计算机技术与发展,2011,(08):241.
 LIU Ben,MAO Yan-qin,SHEN Su-bin.An Intrusion Detection Method Using Data Mining Technology[J].,2011,(09):241.
[14]姜参,王大伟.一种改进蚁群聚类的入侵检测方法[J].计算机技术与发展,2013,(12):139.
 JIANG Shen,WANG Da-wei.An Improved Ant Colony Clustering Method for Intrusion Detection[J].,2013,(09):139.

备注/Memo

备注/Memo:
陈学进(1972-),男,安徽六安人,讲师,硕士研究生,研究厅向为计算机软件理论及数据挖掘;导师:胡学钢,博士,教授,研究方向为知识工程、数据挖掘、数据结构
更新日期/Last Update: 1900-01-01