[1]范莉丽 王奇志.改进的生物激励神经网络的机器人路径规划[J].计算机技术与发展,2006,(04):19-21.
 FAN Li-li,WANG Qi-zhi.Robot Path Planning of Modified Biologically Inspired Neural Networks[J].,2006,(04):19-21.
点击复制

改进的生物激励神经网络的机器人路径规划()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年04期
页码:
19-21
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Robot Path Planning of Modified Biologically Inspired Neural Networks
文章编号:
1005-3751(2006)04-0019-03
作者:
范莉丽 王奇志
北京交通大学计算机与信息技术学院
Author(s):
FAN Li-liWANG Qi-zhi
School of Computer and Information Technology, Beijing J iaotong University
关键词:
移动机器人路径规划神经网络神经元活性值障碍回避
Keywords:
mobile robotpath planningneural networksneural dynamicsobstacle avoidsnce
分类号:
TP24
文献标志码:
A
摘要:
介绍了基于生物激励神经网络的移动机器人路径规划。机器人的路径生成过程是由神经网络组成动态变化的冲经元活性值状态路线图实现的。通过神经元活性值的传播,机器人被吸引到目标点,而同时障碍物使自己处在活性值最低点,起到推开机器人避碰的目的。仿真研究表明该方法生成的由起始点到目标点的路径是连续的、平滑的.避障的,不会陷入U形障碍物,与障碍物形状和所处位置无关,能对快速变化的环境做出迅速反应。但在当前位置邻近位置中具有最大活性值的位置不惟一的情况下,产生路径可能不理想,即到达目标点的避障路径是较长的,而不是最短或者是接近最短的。文中对该不足进行了分析,并提出了改进方法,使生成路径是最短的或是接近最短。对改进方法进行了仿真,实验结果证明该方法是有效的和可行的
Abstract:
The biologically inspired neural networks based path planning approacbes of mobile robot were introduced. The generated path of mobile robot is realized by the dynamics neural activity landscape consisting of networks. Robot was attracted to the target through the neural activity propagation,while the obstacles put away the robot to avoid collision by making themselves stay at the valley of the activity landscape. Simulation demonstated that the generated path was continuous, smooth, and obstacle avoidance, not trapped in concave Ushaped obstacle, has nothing to do with the shape and location of the obstacles , can respond quickly to the fast changing environment. But the generated path may not be ideal, in the sense that the obstacle avoided path is not the shortest or approximatly shortest but relatively long in the situation that the number of the neighboring position possessing the max aetivitiy of current position is not role. This disadvantage was analyzed in the paper ,and a modified method was proposed to make the generated path is the shorest or approximatly shorest. Simulate the modified method, the simulation results show that the method is valid and feasible

相似文献/References:

[1]熊力 方康玲 刘永祥.GPS导航系统在道路巡检中的应用研究[J].计算机技术与发展,2010,(06):246.
 XIONG Li,FANG Kang-ling,LIU Yong-xiang.Research of GPS Navigation System in Road Patrol Line[J].,2010,(04):246.
[2]胡佳 汪峥.工业机器人路径规划的双目标优化策略[J].计算机技术与发展,2009,(05):16.
 HU Jia,WANG Zheng.Bi- objective Optimization of Path Planning for Manipulators[J].,2009,(04):16.
[3]张荣松 包家汉.基于改进遗传算法的机器人路径规划[J].计算机技术与发展,2009,(07):20.
 ZHANG Rong-song,BAO Jia-han.Robot Path Planning Based on Modified Genetic Algorithm[J].,2009,(04):20.
[4]郑延斌 李新源 段德全.一种保持Agent团队队形的路径规划方法[J].计算机技术与发展,2009,(07):159.
 ZHENG Yan-bin,LI Xin-yuan,DUAN De-quan.A Path Planning Algorithm with Agent Team Formation Maintained[J].,2009,(04):159.
[5]王娜 马昕.基于细化算法的移动机器人拓扑地图创建[J].计算机技术与发展,2009,(10):11.
 WANG Na,MA Xin.Mobile Robot Topological Map Building Based on Thinning Algorithm[J].,2009,(04):11.
[6]刘雁菲 邵晓东 李申.基于Vega的虚拟漫游场景中的路径规划研究[J].计算机技术与发展,2008,(06):9.
 LIU Yan-fei,SHAO Xiao-dong,LI Shen.Path Planning Based on Vega of Navigation in Virtual Environment[J].,2008,(04):9.
[7]陈得宝 李庆 李群 李峥.基于内分泌思想的改进粒子群算法[J].计算机技术与发展,2008,(10):61.
 CHEN De-bao,LI Qing,LI Qun,et al.An Improved Particle Swarm Algorithm Based on Endocrine Idea[J].,2008,(04):61.
[8]于锐 曹介南 朱培栋.车辆运输路径规划问题研究[J].计算机技术与发展,2011,(01):5.
 YU Rui,CAO Jie-nan,ZHU Pei-dong.Research for Routing Planning of Vehicle Transportation[J].,2011,(04):5.
[9]吕凌 曾碧.基于评估和分工合作并行蚁群机器人路径规划[J].计算机技术与发展,2011,(09):10.
 Lü Ling,ZENG Bi.Path Planning for Robot Introduction Parallel Ant Colony Algorithm Based on Division of Labor and Assessment[J].,2011,(04):10.
[10]孙柏林 高珏 孔超[] 许华虎[].一种家居机器人路径规划方法的研究[J].计算机技术与发展,2012,(03):67.
 SUN Bai-lin,GAO Jue,KONG Chao,et al.Study on Path Planning of Indoor Robots[J].,2012,(04):67.
[11]王肖青 王奇志.传统人工势场的改进[J].计算机技术与发展,2006,(04):96.
 WANG Xiao-qing,WANG Qi-zhi.An Evolutionary Method of Traditional Artificial Potential Field[J].,2006,(04):96.
[12]张璐 张国良 张维平 敬斌.基于粒子群三次样条优化的局部路径规划方法[J].计算机技术与发展,2012,(11):145.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Local Path Planning Algorithm Based on Particle Swarm Optimization of Cubic Splines[J].,2012,(04):145.
[13]徐丁,朱擎飞,叶晓东.遗传算法在移动机器人路径规划中的应用[J].计算机技术与发展,2013,(11):112.
 XU Ding,ZHU Qing-fei,YE Xiao-dong.Application of Genetic Algorithm in Mobile Robot Path Planning[J].,2013,(04):112.
[14]张俊溪,米国际,王鑫,等.基于进化算法和模糊控制的机器人路径规划[J].计算机技术与发展,2018,28(06):49.[doi:10.3969/ j. issn.1673-629X.2018.06.011]
 ZHANG Jun-xi,MI Guo-ji,WANG Xin,et al.Research on Path Planning of Robot Based on Evolutionary Algorithm and Fuzzy Control Algorithm[J].,2018,28(04):49.[doi:10.3969/ j. issn.1673-629X.2018.06.011]
[15]李登峰,杨 曦.基于改进智能水滴算法的移动机器人路径规划[J].计算机技术与发展,2019,29(12):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]
 LI Deng-feng,YANG Xi.Path Planning of Mobile Robot Based on Improved Intelligent Water Drop Algorithm[J].,2019,29(04):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]

备注/Memo

备注/Memo:
清华大学智能技术与系统国家重点实验室开放课题资助(0413)范莉丽(1978-),女,江西南昌人,硕士研究生,研究方向为移动机器人路径规划;王奇志,副教授,博士,研究方向为机器人智能控制、路径规划、多机器人协调等
更新日期/Last Update: 1900-01-01