[1]詹超 胡江洪.SVM在基因表达数据分类中的研究和应用[J].计算机技术与发展,2006,(03):107-109.
 ZHAN Chao,HU Jiang-hong.Research and Application of SVM in Classification of Gene Expression Data[J].,2006,(03):107-109.
点击复制

SVM在基因表达数据分类中的研究和应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年03期
页码:
107-109
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research and Application of SVM in Classification of Gene Expression Data
文章编号:
1005-3751(2006)03-0107-03
作者:
詹超 胡江洪
武汉理工大学计算机科学与技术学院
Author(s):
ZHAN Chao HU Jiang-hong
School of Computer Sci. and Techn. ,Wuhan University of Technology
关键词:
基因微序列基因表达式支向量机核函数模式分类
Keywords:
gene microarray gene expresslonsupport vector machine kernel functlon pattern classification
分类号:
TP183
文献标志码:
A
摘要:
介绍了一种使用基因芯片实验产生的基因表达数据对功能基因进行分类的方法,该方法是以支持向量机(SVM)理论为基础的。文中描述了径向基函数SVM,与其它SVM相比,径向基函数SVM在基因分类中有更好的性能。SVM的理论基础是统计学习理论,它不仅结构简单,而且技术性能高,泛化能力强,在基因表达式分类中表现出有很多优点,成为热点研究方向
Abstract:
Introduce a method of functionally classifying genes using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector mschine(SVMs). Describe SVMs that uses different similarity metrics including a simple dot product of gene expression vectors, polynomial version of the dot product, and a radial hasis function, Compared to the other SVM similarity metrics,the radial basis function SVM appears to provide superior performance in identifying sets of genes with a common function using expression data. In addition,SVM performance is compared to four standard machine learning algorithms. SVMs have many features that make them attractive for gene expression analysis,including their flexibility in chosing a similarity function, sparseness of solution when dealing with large data sets,the ability to handle large feature spaces,and the ability to identify outliers

备注/Memo

备注/Memo:
詹超(1979-),男,湖北黄冈人,硕士研究生,从事支持向量机、模式识别研究;导师:熊盛武,硕士生导师,教授,研究领域为遗传算法、支持向量机、模式识别、数据挖掘
更新日期/Last Update: 1900-01-01