[1]张茜茜,陈 平.基于图卷积的离子液体 CO2 溶解度可解释性预测[J].计算机技术与发展,2024,34(02):134-141.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 020]
 ZHANG Qian-qian,CHEN Ping.Interpretable Prediction of CO2 Solubility of Ionic Liquids Based on Graph Convolution Neural Network[J].,2024,34(02):134-141.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 020]
点击复制

基于图卷积的离子液体 CO2 溶解度可解释性预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
34
期数:
2024年02期
页码:
134-141
栏目:
人工智能
出版日期:
2024-02-10

文章信息/Info

Title:
Interpretable Prediction of CO2 Solubility of Ionic Liquids Based on Graph Convolution Neural Network
文章编号:
1673-629X(2024)02-0134-08
作者:
张茜茜12 陈 平12
1. 中北大学 信息与通信工程学院,山西 太原 030051;
2. 信息探测与处理山西省重点实验室(中北大学),山西 太原 030051
Author(s):
ZHANG Qian-qian12 CHEN Ping12
1. School of Information and Communication Engineering,North University of China,Taiyuan 030051,China;
2. Shanxi Province Key Laboratory of Information Detection and Processing,North University of China, Taiyuan 030051,China
关键词:
图卷积神经网络离子液体性质预测溶解度可解释性
Keywords:
graph convolutional neural networksionic liquidsproperty predictionsolubilityinterpretability
分类号:
TP181
DOI:
10. 3969 / j. issn. 1673-629X. 2024. 02. 020
摘要:
为构建离子液体的 CO2 溶解度的准确预测模型,考虑到传统模型存在的描述符计算复杂、成本高、关联结构与性质困难、结构特征提取不充分等问题,提出一种融合了加入注意力机制的图卷积神经网络和 XGBoost 的预测模型( APGCN-XGBoost) 。 对 9 897 组离子液体的 CO2 溶解度数据的分析结果显示,所提出的 APGCN-XGBoost 模型在预测性能上优于传统的分子指纹模型和图卷积神经网络模型。 此外,通过注意力池化层与 SHAP 方法对模型进行解释,APGCN-XGBoost 模型学习到了离子液体中各个原子和结构的特征信息与分子非局部信息,这些特征信息不仅可以用于性质预测,还可以用于探索化学结构与性质之间的联系,即通过模型的解释,筛选出对于溶解度预测重要的离子液体结构信息,从而实现 CO2捕获过程中理想离子液体的计算机辅助设计和筛选。
Abstract:
In order to build an accurate prediction model of CO2 solubility of ionic liquids, considering the problems existing intraditional models,such as complex descriptor calculation,high cost,difficult related structure and properties,and insufficient structuralfeature extraction, a prediction model APGCN - XGBoost combining graph convolution neural network and?
XGBoost with attentionmechanism was proposed. The analysis results of CO2 solubility data of 9 897 groups of ionic liquids show that the predictionperformance of the proposed APGCN-XGBoost model is better than that of the traditional molecular fingerprint model and graph convolutional neural network model. In addition,the APGCN-XGBoost model learned the characteristic information and molecular non-localinformation of each atom and structure in ionic liquids,which can be used not only to predict the properties,but also to explore the relationship between the chemical structures and properties,that is,to screen out the structural information of ionic liquids that is important forsolubility prediction through the interpretation of the model,thus realizing the computer-aided design and screening of ideal ionic liquidsin the process of CO2 capture.

相似文献/References:

[1]刘 臣,李 秋,郝宇辰.基于图卷积神经网络的在线社区行为预测[J].计算机技术与发展,2021,31(04):28.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 005]
 LIU Chen,LI Qiu,HAO Yu-chen.Prediction of Collaborative Behavior of Users in Online KnowledgeCommunities Based on Graph Convolutional Neural Network[J].,2021,31(02):28.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 005]
[2]李社蕾,杨博雄,陆娇娇.谱图傅里叶变换与谱图小波变换基分析研究[J].计算机技术与发展,2021,31(05):85.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 015]
 ,,et al.AnalysisandStudyofSpectralFourierTransform andSpectralWaveletTransform Basis[J].,2021,31(02):85.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 015]
[3]建兵,杨 超*,刘方方,等.基于图卷积神经网络和 RoBERTa 的物流订单分类[J].计算机技术与发展,2023,33(10):195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 030]
 WANG Jian-bing,YANG Chao*,LIU Fang-fang,et al.A Logistics Order Classification Method Based on Graph Convolution Network and RoBERTa[J].,2023,33(02):195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 030]
[4]张 艳,肖文琛,张 博.基于双流骨架信息的人体动作识别方法[J].计算机技术与发展,2024,34(01):158.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 023]
 ZHANG Yan,XIAO Wen-chen,ZHANG Bo.Human Action Recognition Method Based on Two-flow Skeleton Information[J].,2024,34(02):158.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 023]
[5]朱 越,黄海于,罗学义.基于实时视频流的 3D 人体姿势和形状估计[J].计算机技术与发展,2024,34(04):42.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 007]
 ZHU Yue,HUANG Hai-yu,LUO Xue-yi.3D Human Pose and Shape Estimation Based on Live Video Streams[J].,2024,34(02):42.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 007]

更新日期/Last Update: 2024-02-10