[1]沈鑫科,李 勇,陈建伟,等.融合协同知识图谱和图卷积网络的推荐算法[J].计算机技术与发展,2024,34(01):150-157.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 022]
 SHEN Xin-ke,LI Yong,CHEN Jian-wei,et al.Collaborative Knowledge Graph and Graph Convolution Network Based Recommendation Algorithm[J].,2024,34(01):150-157.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 022]
点击复制

融合协同知识图谱和图卷积网络的推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
34
期数:
2024年01期
页码:
150-157
栏目:
人工智能
出版日期:
2024-01-10

文章信息/Info

Title:
Collaborative Knowledge Graph and Graph Convolution Network Based Recommendation Algorithm
文章编号:
1673-629X(2024)01-0150-08
作者:
沈鑫科12 李 勇12 陈建伟2 陈囿任1
1. 新疆师范大学 计算机科学技术学院,新疆 乌鲁木齐 830054;
2. 新疆电子研究所,新疆 乌鲁木齐 830013
Author(s):
SHEN Xin-ke12 LI Yong12 CHEN Jian-wei2 CHEN You-ren1
1. School of Computer Science and Technology,Xinjiang Normal University,Urumqi 830054,China;
2. Xinjiang Electronic Research Institute,Urumqi 830013,China
关键词:
推荐算法协同知识图谱注意力机制图卷积网络实体特征
Keywords:
recommendation algorithmcollaborative knowledge graphattention mechanismgraph convolution networkentity feature
分类号:
TP391. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2024. 01. 022
摘要:
推荐系统广泛应用于互联网,缓解信息过载问题。 现有研究通常将知识图谱引入推荐算法中,但不能有效获取用户与项目的高阶建模以及存在数据稀疏性的问题。 该文提出了一种融合协同知识图谱和图卷积网络的推荐算法(CKGCN) 。 首先,将用户-项目交互矩阵与项目知识图谱构建为协同知识图谱,利用知识感知注意力机制对邻居节点进行权重分配,递归地捕获用户和项目的特征向量,搜索用户对项目的潜在喜好,有效缓解数据稀疏性的问题。 其次,采用基于图卷积网络的邻域聚合算法捕捉每层实体网络之间的高阶联系,将实体与邻域实体聚合,丰富实体语义表示。 另外,通过交叉压缩单元协作处理项目特征向量与实体特征向量,探索二者的高阶特征交互,从而过滤实体的冗余信息、挖掘项目更深层次的联系。 最后,对用户特征向量与项目特征向量进行计算得出用户对项目的预测概率。 经过点击率预测及Top-k 推荐实验证明,在书籍 Book_Crossing 和音乐 Last. FM 两个公开的数据集上,该算法与五种基线算法相比较,AUC,ACC,F1,Recall@ k 和 Precision@ k 评价指标值均有提升,表明该模型具有良好的推荐性能。
Abstract:
The recommendation system is widely used in the Internet to alleviate the problem of information overload. The existingresearch usually introduces knowledge graph into recommendation algorithm,but it cannot effectively obtain the high-level modeling ofusers and projects and has the problem of data sparsity. We propose a collaborative knowledge graph and graph convolution networkbased recommendation algorithm ( CKGCN) . Firstly,the user project interaction matrix and the project knowledge graph are constructedas?
a collaborative knowledge graph. The weight of neighbor nodes is allocated using the knowledge awareness attention mechanism,thefeature vectors of users and projects are captured recursively,and the potential preferences of users for projects are searched to effectivelyalleviate the problem of data sparsity. Secondly,the neighborhood aggregation algorithm based on graph convolution network is used tocapture the higher-order relationship between each layer of entity network,aggregate entities and neighborhood entities,
and enrich entitysemantic representation. In addition, the cross - compression unit cooperatively processes the project feature vector and entity featurevector to explore their higher - order feature interaction, so as to filter the redundant information of entities and mine the deeperrelationship of projects. Finally,the user feature vector and the project feature vector are calculated to obtain the prediction probability ofthe user to the project. According to the hit rate prediction and Top-k recommendation experiment,on the two public datasets of Crossingand Music Last. FM,this model is compared with five baseline models,namely,AUC,ACC,F1 Recall@ k and Precision@ k,and the evaluation index values have been improved,indicating that the model has good recommendation performance.

相似文献/References:

[1]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(01):116.
[2]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].,2015,25(01):24.
[3]李远博,曹菡. 基于PCA降维的协同过滤推荐算法[J].计算机技术与发展,2016,26(02):26.
 LI Yuan-bo,CAO Han. Collaborative Filtering Recommendation Algorithm Based on PCA Dimension Reduction[J].,2016,26(01):26.
[4]张春生[],图雅[],翁慧[],等. 基于电子商务同类商品的推荐算法研究[J].计算机技术与发展,2016,26(05):17.
 ZHANG Chun-sheng[],TU Ya[],WENG Hui[],et al. Research on Similar Products Recommendation Algorithm Based on Electronic Commerce[J].,2016,26(01):17.
[5]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(01):31.
[6]蒋宗礼,王威,陆晨. 基于均值预估的协同过滤推荐算法改进[J].计算机技术与发展,2017,27(05):1.
 JIANG Zong-li,WANG Wei,LU Chen. 基于均值预估的协同过滤推荐算法改进[J].,2017,27(01):1.
[7]许德心,李玲娟.基于 Spark 的关联规则挖掘算法并行化研究[J].计算机技术与发展,2019,29(03):30.[doi:10.3969/ j. issn.1673-629X.2019.03.006]
 XU De-xin,LI Ling-juan.Research on Parallelization of Association Rules Mining Algorithm Based on Spark[J].,2019,29(01):30.[doi:10.3969/ j. issn.1673-629X.2019.03.006]
[8]史 伟,张青云,李 帅.基于 LBS 的停车位共享平台设计[J].计算机技术与发展,2019,29(11):149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 030]
 SHI Wei,ZHANG Qing-yun,LI Shuai.Design of Sharing Platform for Parking Spaces Based on LBS[J].,2019,29(01):149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 030]
[9]康嘉钰,苏凡军.基于生成对抗网络的长短兴趣推荐模型[J].计算机技术与发展,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
 KANG Jia-yu,SU Fan-jun.A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks[J].,2020,30(01):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
[10]刘 旭,李玲娟.基于项目聚类和时间衰减的动态协同过滤算法[J].计算机技术与发展,2020,30(08):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]
 LIU Xu,LI Ling-juan.Dynamic Collaborative Filtering Algorithm Based on Item Clustering and Time Decay[J].,2020,30(01):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]

更新日期/Last Update: 2024-01-10