[1]张雪松,李冠君,聂士佳,等.两阶段文档筛选和异步多粒度图多跳问答[J].计算机技术与发展,2024,34(01):121-127.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 018]
 ZHANG Xue-song,LI Guan-jun,NIE Shi-jia,et al.Two-stage Document Filtering and Asynchronous Multi-granularity Graph Multi-hop Question Answering[J].,2024,34(01):121-127.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 018]
点击复制

两阶段文档筛选和异步多粒度图多跳问答()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
34
期数:
2024年01期
页码:
121-127
栏目:
人工智能
出版日期:
2024-01-10

文章信息/Info

Title:
Two-stage Document Filtering and Asynchronous Multi-granularity Graph Multi-hop Question Answering
文章编号:
1673-629X(2024)01-0121-07
作者:
张雪松12 李冠君2 聂士佳12 张大伟2 吕 钊1 陶建华3
1. 安徽大学 计算机科学与技术学院,安徽 合肥 230601;
2. 中国科学院自动化研究所 模式识别国家重点实验室,北京 100190;
3. 清华大学 自动化系,北京 100084
Author(s):
ZHANG Xue-song12 LI Guan-jun2 NIE Shi-jia12 ZHANG Da-wei2 LYU Zhao1 TAO Jian-hua3
1. School of Computer Science and Technology,Anhui University,Hefei 230601,China;
2. State Key Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences, Beijing 100190,China;
3. Department of Automation,Tsinghua University,Beijing 100084,China
关键词:
多跳问答文档筛选多粒度图异步更新答案预测
Keywords:
multi-hop question answeringdocument filteringmulti-granularity graphasynchronous updateanswer prediction
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2024. 01. 018
摘要:
多跳问答旨在通过对多篇文档内容进行推理,来预测问题答案以及针对答案的支撑事实。 然而当前的多跳问答方法在文档筛选任务中旨在找到与问题相关的所有文档,未考虑到这些文档是否都对找到答案有所帮助。 因此,该文提出一种两阶段的文档筛选方法。 第一阶段通过对文档进行评分且设置较小的阈值来获取尽可能多的与问题相关文档,保证文档的高召回率;第二阶段对问题答案的推理路径进行建模,在第一阶段的基础上再次提取文档,保证文档的高精确率。 此外,针对由文档构成的多粒度图,提出一种新颖的异步更新机制来进行答案预测以及支撑事实预测。 提出的异步更新机制将多粒度图分为异质图和同质图来进行异步更新以更好地进行多跳推理。 该方法在性能上优于目前主流的多跳问答方法,验证了该方法的有效性。
Abstract:
Multi-hop question answering aims to predict the answer to a question and the supporting facts for the answer by reasoningover the content of multiple documents. However,current multi-hop question answering methods aim to find all documents related to thequestion in the document filtering task,without considering whether all these documents are useful for finding the answer. Therefore,wepropose a two-stage document filtering approach. In the first stage,the documents are scored and a small threshold is set to obtain asmany relevant documents as possible to ensure a high recall of documents. In the second stage,the inference path of the question answeris modeled,and the documents are extracted again based on the first stage to ensure high accuracy. In addition,we propose a novel asynchronous update mechanism for answer prediction and supporting fact prediction for multi - granularity graph composed of documents.The proposed asynchronous update mechanism divides the multi-grain graph into heterogeneous and homogeneous graphs to perform asynchronou updates for better multi-hop inference. The performance of the proposed method is better than that of the current mainstreammulti hop question answering method,and the effectiveness of the proposed method is verified.
更新日期/Last Update: 2024-01-10