[1]陈海青,蔡江辉,杨海峰,等.基于特征加权与自动交互的点击率预测模型[J].计算机技术与发展,2023,33(11):196-201.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 029]
CHEN Hai-qing,CAI Jiang-hui,YANG Hai-feng,et al.Click-through Rate Prediction Model Based on Feature Weighting and Automatic Interaction[J].,2023,33(11):196-201.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 029]
点击复制
基于特征加权与自动交互的点击率预测模型(
)
《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
33
- 期数:
-
2023年11期
- 页码:
-
196-201
- 栏目:
-
人工智能
- 出版日期:
-
2023-11-10
文章信息/Info
- Title:
-
Click-through Rate Prediction Model Based on Feature Weighting and Automatic Interaction
- 文章编号:
-
1673-629X(2023)11-0196-06
- 作者:
-
陈海青; 蔡江辉; 杨海峰; 贺艳婷
-
太原科技大学 计算机科学与技术学院,山西 太原 030024
- Author(s):
-
CHEN Hai-qing; CAI Jiang-hui; YANG Hai-feng; HE Yan-ting
-
School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China
-
- 关键词:
-
点击率预测; 特征交互; 特征加权; 深度神经网络; 多头自注意网络
- Keywords:
-
click through rate prediction; feature interaction; feature weighting; deep neural network; multi-head self-attention network
- 分类号:
-
TP391
- DOI:
-
10. 3969 / j. issn. 1673-629X. 2023. 11. 029
- 摘要:
-
在大数据时代的点击率( Click-Through Rate,CTR) 预测任务中,输入数据不仅数量多而且特征维度很高,在特征选择时容易出现信息干扰或丢失,在进行特征交互时不同的交互方式也会影响预测性能。 针对该问题,文中提出了一种基于特征加权与自动交互的预测模型,用于学习原始特征权重并进行自动交互。 首先,引入 ECANet 模块提出一种不降维的特征加权方法,该方法可以通过对 k 个相邻特征进行一维卷积有效实现。 然后,分别用多头自注意网络和深度神经网络(DNN) 去自动学习显式和隐式的特征交互。 最后,将两者相结合进行预测,弥补了单一模型的缺陷。 一方面,它能对输入特征进行重要性选择;另一方面,它能同时以显式和隐式的方式自动学习任意低阶和高阶的特征交互。 通过在四个真实数据集上的实验,验证了其比以往的预测模型获得了更好的准确度。
- Abstract:
-
In the click-through rate ( CTR) prediction task in the era of big data,the input data is not only large in quantity but also has ahigh feature dimension,which is prone to information interference or loss during feature selection. Different interaction modes duringfeature interaction will also affect the prediction performance. To solve this problem,a prediction model based on feature weighting andautomatic interaction is proposed,which is used to learn the original feature weights and interact automatically. Firstly,we introduce anECANet module and propose a feature-weighting method without dimensionality reduction,which uses one-dimensional convolution of kadjacent features to learn feature weights. Then, multi - head self - attention network and deep neural network ( DNN ) are used toautomatically learn explicit and implicit feature interactions. Finally, the two are combined to predict, solving the defects of a singlemodel. On the one hand,it can select the importance of input features. On the other hand,it can automatically learn arbitrary low- andhigh-order feature interactions in both explicit and implicit ways. And experimental results on four real data sets have proved that theprediction model is more accurate than the previous model.
更新日期/Last Update:
2023-11-10