[1]阮鸿柱,黄小弟,王金宝,等.面向高速公路事故风险预测的深度学习方法[J].计算机技术与发展,2023,33(11):189-195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 028]
 RUAN Hong-zhu,HUANG Xiao-di,WANG Jin-bao,et al.A Deep Learning Approach for Highway Accident Risk Prediction[J].,2023,33(11):189-195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 028]
点击复制

面向高速公路事故风险预测的深度学习方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年11期
页码:
189-195
栏目:
人工智能
出版日期:
2023-11-10

文章信息/Info

Title:
A Deep Learning Approach for Highway Accident Risk Prediction
文章编号:
1673-629X(2023)11--0189-07
作者:
阮鸿柱1 黄小弟1 王金宝1 杜梦辉2
1. 云南省综合交通发展中心,云南 昆明 650031;
2. 北京交通大学 计算机与信息技术学院,北京 100044
Author(s):
RUAN Hong-zhu1 HUANG Xiao-di1 WANG Jin-bao1 DU Meng-hui2
1. Yunnan Transportation Development Center,Kunming 650031,China;
2. School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China
关键词:
智能交通交通事故风险预测对比学习自适应图神经网络数据增广
Keywords:
intelligent transportationtraffic accident risk predictioncontrastive learningadaptive graph convolutional networkdata augmentation
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 11. 028
摘要:
高速公路的交通事故风险预测对智能交通和公共安全具有重要意义。 现有方法通过挖掘历史事故的时空特征预测交通事故风险。 但是,在高速公路事故风险预测中仍存在以下两个挑战。 首先,事故具有不均衡的空间分布,相邻路段的事故分布差异可能较大,而相隔较远却具有相似拓扑连接关系路段的事故分布可能较相似。 另外,由于事故的偶发性,其在时间维的分布非常稀疏,因此在捕获事故影响因素时缺乏足够的样本。 针对第一个挑战,使用自适应图卷积网络以数据驱动的方式学习路段间的空间相关性;此外,根据 Mixup 策略进行数据
增广以生成足够多的事故风险样本解决事故数量稀疏的问题,然后用对比学习方法以更好地区分风险与非风险样本,以实现更准确的事故风险预测。 基于桂林市高速公路网真实交通数据集的实验结果表明,相比于最优方法,该方法的平均绝对误差指标降低了 18. 3% ,平均准确率、召回率指标分别提升了 8. 1% 、6. 9% ,因此,该方法可以更准确地预测高速公路事故风险。
Abstract:
Highway traffic accident risk prediction is vital to intelligent transportation and public safety. Existing approaches predict trafficaccident risk by mining the spatio - temporal characteristics of historical accidents. However,there are still two challenges in highwayaccident risk prediction. Firstly,the accidents have uneven spatial distribution. The difference in accident distribution between adjacentroads may be large,while the accident distribution of distant roads with similar topological connection relationships may?
be similar. In addition,due to the contingency of the accident, its distribution in the time dimension is quite sparse,so there is not enough sample tocapture the influence factors?
of traffic accidents. For the first challenge,we use an adaptive graph convolutional network to learn thespatial correlation between roads in a data-driven way. In addition,we?
adopt data augmentation based on a Mixup strategy to generateenough accident risk samples to solve the problem of data sparsity and then use contrastive learning to better distinguish risk and non-risksamples so as to achieve more accurate accident risk prediction. The experimental results based on the real traffic dataset of the Guilin expressway network show that compared with other optimal methods,the mean absolute error of the proposed method is reduced by 18. 3% ,and the average accuracy and the recall are increased by 8. 1% and 6. 9% ,respectively. Therefore, the proposed method can predicthighway accident risk more accurately.

相似文献/References:

[1]刘萌萌.基于无标度摄像机的车流跟踪与速度估计算法[J].计算机技术与发展,2008,(06):111.
 LIU Meng-meng.Algorithm on Vehicle Tracking and Speed Estimating Based on Non- Calibrated Camera[J].,2008,(11):111.
[2]李庆庆 张燕平.基于模糊边缘检测算法的车牌定位[J].计算机技术与发展,2006,(12):7.
 LI Qing-qing,ZHANG Yan-ping.License Plate Location Based on Fuzzy Edge Detection[J].,2006,(11):7.
[3]魏永超.基于SOPC的视频车辆检测技术研究[J].计算机技术与发展,2011,(05):227.
 WEI Yong-chao.Research on Video Vehicle Detecting Based on SOPC[J].,2011,(11):227.
[4]任晓莉.基于WSN的路口交通信号控制设计[J].计算机技术与发展,2011,(10):193.
 REN Xiao-li.Intelligent Traffic Control Design Based on Wireless Sensors Network[J].,2011,(11):193.
[5]刘亚非 辛飞飞.基于综合特征的车辆检测识别系统[J].计算机技术与发展,2012,(09):18.
 LIU Ya-fei,XIN Fei-fei.Vehicle Detection and Recognition System Based on Comprehensive Features[J].,2012,(11):18.
[6]蒋新华[][],胡惠淳[],张锦[],等. 云计算系统研究及其在交通运输中的应用[J].计算机技术与发展,2014,24(11):217.
 JIANG Xin-hua[][],HU Hui-chun[],ZHANG Jin[],et al. Research on Cloud Computing System and Its Application in Traffic Transportation[J].,2014,24(11):217.
[7]张永灿[][],黄海平[] [],曹雍[] 王汝传[][][]. 基于无线传感网的智能交通灯自适应算法[J].计算机技术与发展,2015,25(02):199.
 ZHANG Yong-can[] [],HUANG Hai-ping[] [],CAO Yong[],et al. Adaptive Traffic Light Control Algorithm Based on Wireless Sensor Networks[J].,2015,25(11):199.
[8]曹志威[],邵旭东[],樊志杰[][],等. 基于视频安全接入的道路紧急事件响应机制[J].计算机技术与发展,2015,25(07):166.
 CAO Zhi-wei[],SHAO Xu-dong[],FAN Zhi-jie[][],et al. Response Mechanism of Road Emergency Based on Video Security Access[J].,2015,25(11):166.
[9]王潜,张艳彬.基于双目视觉的货车尺寸测量[J].计算机技术与发展,2018,28(06):161.[doi:10.3969/ j. issn.1673-629X.2018.06.036]
 WANG Qian,ZHANG Yan-bin.Truck Dimensions Measurement Based on Binocular Vision[J].,2018,28(11):161.[doi:10.3969/ j. issn.1673-629X.2018.06.036]
[10]张志杰[],杨硕[]. 主-从PTZ视频检测软件模块化设计及架构[J].计算机技术与发展,2016,26(09):114.
 ZHANG Zhi-jie[],YANG Shuo[]. Modular Design and Architecture of Master-slave PTZ Video Detection Software[J].,2016,26(11):114.

更新日期/Last Update: 2023-11-10