[1]张 睿,李允臣,王家宝*,等.基于深度学习的红外目标检测综述[J].计算机技术与发展,2023,33(11):1-8.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 001]
 ZHANG Rui,LI Yun-chen,WANG Jia-bao*,et al.Survey on Infrared Object Detection Based on Deep Learning[J].,2023,33(11):1-8.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 001]
点击复制

基于深度学习的红外目标检测综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年11期
页码:
1-8
栏目:
综述
出版日期:
2023-11-10

文章信息/Info

Title:
Survey on Infrared Object Detection Based on Deep Learning
文章编号:
1673-629X(2023)11-0001-08
作者:
张 睿李允臣王家宝* 李 阳苗 壮
陆军工程大学 指挥控制工程学院,江苏 南京 210007
Author(s):
ZHANG RuiLI Yun-chenWANG Jia-bao* LI YangMIAO Zhuang
College of Command and Control Engineering,Army Engineering University of PLA,Nanjing 210007,China
关键词:
深度学习红外目标检测迁移学习注意力机制特征融合图像融合
Keywords:
deep learninginfrared object detectiontransfer learningattention mechanismfeature fusionimage fusion
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 11. 001
摘要:
红外图像由于分辨率低、纹理细节不足,且缺乏颜色信息,导致目标成像模糊,检测难度大。 基于深度学习的红外目标检测技术,通过运用神经网络自动提取复杂的目标特征,大大提高
了检测精度和检测效率,在自动驾驶、安防监控、军事侦察等领域得到了非常广泛的应用。 该文对红外目标检测面临的困难和挑战进行了详细分析,并从数据增强、迁移学习、视觉注意力机制、多尺度特征融合、多模态图像融合和轻量化改进等六个方面,对基于深度学习的红外目标检测研究改进方向进行了系统阐述。 针对红外目标检测数据集缺乏的问题,梳理汇总了 11 个红外目标检测数据集。 同时,结合当前发展现状,对红外目标检测的未来发展方向进行了展望,可为其他研究者提供参考借鉴。
Abstract:
Infrared images have low resolution, insufficient texture details, and lack of color information, resulting in blurred objectimaging and difficult detection. Deep learning-based infrared object detection technology uses complex neural networks to automaticallyextract object features, has greatly improved detection accuracy and detection efficiency,?
and has been widely used in the fields ofautonomous driving,security surveillance,and military reconnaissance. We present a detailed analysis of the difficulties and challenges facing infrared target detection,and systematically describe the improvement directions of deep learning-based infrared object detectionresearch in six aspects,including data enhancement,transfer learning,visual attention mechanism,multiscale feature fusion,multimodalimage fusion and lightness improvement. To address the problem of lack of infrared object detection datasets,we compose and summarize11 infrared object detection datasets. At the same time,the future development direction of infrared object detection is prospected with thecurrent development status,which can provide reference for other researchers.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(11):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(11):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(11):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(11):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(11):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(11):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(11):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(11):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(11):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(11):7.

更新日期/Last Update: 2023-11-10