[1]蒿敬波,阳广贤,肖湘江,等.基于 Transformer 模型的心音小波谱图识别[J].计算机技术与发展,2023,33(10):189-194.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 029]
 HAO Jing-bo,YANG Guang-xian,XIAO Xiang-jiang,et al.Recognition of Heart Sound Scalograms Based on Transformer Model[J].,2023,33(10):189-194.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 029]
点击复制

基于 Transformer 模型的心音小波谱图识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年10期
页码:
189-194
栏目:
人工智能
出版日期:
2023-10-10

文章信息/Info

Title:
Recognition of Heart Sound Scalograms Based on Transformer Model
文章编号:
1673-629X(2023)10-0189-06
作者:
蒿敬波12 阳广贤3 肖湘江2 陶 阳1
1. 南昌工学院 信息与人工智能学院,江西 南昌 330108;
2. 湖南超能机器人,湖南 长沙 410003;
3. 湖南省儿童医院,湖南 长沙 410007
Author(s):
HAO Jing-bo12 YANG Guang-xian3 XIAO Xiang-jiang2 TAO Yang1
1. School of Information and Artificial Intelligence,Nanchang Institute of Science & Technology,Nanchang 330108,China;
2. Hunan Chaoneng Robot,Changsha 410003,China;
3. Hunan Children’s Hospital,Changsha 410007,China
关键词:
心音深度学习小波谱图自注意力云计算
Keywords:
heart sounddeep learningscalogramself-attentioncloud computing
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 10. 029
摘要:
先天性心脏病(先心病) 是严重威胁儿童健康的常见疾病,尽早进行先心病筛查对于该疾病的及时诊断和手术治疗十分重要,但这在医疗资源相对匮乏的偏远地区却难以实现。 针对上述问题,为实现儿童先心病的智能化早期筛查,提出了一种基于复 Morlet 小波谱图与 Transformer 架构深度神经网络分类器的异常心音识别方法,其中小波谱图可以兼顾非平稳心音信号特征描述的时间分辨率与频率分辨率,而心音分类模型则是在经典 ResNet50 骨干网络的基础上嵌入了Transformer 架构自注意力模块,可有效提升对时序信号谱图的特征提取能力。 此外,还实现了基于 Hilbert 变换的心音包络检查,以及基于 XMLRPC 协议与 Redis 队列的并发心音识别服务部署,便于和前端机器人整合使用。 实验测试显示识别准确率在现场心音数据集上达到 87. 5% ,在 PhysioNet 2016 心音数据集上达到 94. 5% ,表明该方法不仅在公开数据集上优于已有方法,即使是针对现场复杂环境下的心音识别任务也能取得较为理想的效果。
Abstract:
The congenital heart disease ( CHD) is a common disease threatening children爷 s health severely. Early CHD screening iscrucial for timely diagnosis and surgical treatment, but it is difficult to apply early screening in remote districts with relatively scarcemedical resources. Aiming at the problem,a recognition method of abnormal heart sounds based on complex Morlet scalograms and atransformer-based deep neural network classifier is introduced to implement intelligent early CHD screening of children. The scalogramcan balance the time resolution and the frequency resolution for the feature description of non-stationary heart sound signals.?
The classification model inserts a transformer-featured self-attention block into the classic ResNet50 backbone and improves the feature extractionability for sequential signal spectrograms effectively. Besides,the envelope detection of heart sounds based on the Hilbert transform andthe service deployment of a concurrent service of heart sound recognition based on XMLRPC and Redis are realized facilitating theintegration of front-end robots. The experimental results show that the recognition accuracy for the working environment dataset reaches87. 5% and the value for the PhysioNet 2016 dataset is 94. 5% ,which indicates the proposed method here not only is superior to existingmethods on the public dataset,but also can work well in complex realistic conditions.

相似文献/References:

[1]张会香 成谢锋.LabVIEW平台上的心音分析虚拟仪器设计[J].计算机技术与发展,2010,(11):217.
 ZHANG Hui-xiang,CHENG Xie-feng.Heart Sound Analysis Virtual Instrument Based on LabVIEW Platform[J].,2010,(10):217.
[2]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(10):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[3]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(10):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[4]成谢锋,姚鹏飞.基于双阈值的心音快速分段算法及其应用研究[J].计算机技术与发展,2018,28(05):140.[doi:10.3969/j.issn.1673-629X.2018.05.032]
 CHENG Xiefeng,YAO Pengfei.A Fast Heart Sound Segmentation Based on Double Threshold and Its Application[J].,2018,28(10):140.[doi:10.3969/j.issn.1673-629X.2018.05.032]
[5]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(10):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[6]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(10):19.
[7]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(10):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[8]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(10):1.
[9]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[10]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(10):1.

更新日期/Last Update: 2023-10-10