[1]童 攀,龙炳鑫,拥 措 *.基于注意力机制藏文乌金体古籍文字识别研究[J].计算机技术与发展,2023,33(10):163-168.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 025]
 TONG Pan,LONG Bing-xin,YONG Cuo*.Research on Tibetan Ujin Ancient Book Character Recognition Based on Attention Mechanism[J].,2023,33(10):163-168.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 025]
点击复制

基于注意力机制藏文乌金体古籍文字识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年10期
页码:
163-168
栏目:
人工智能
出版日期:
2023-10-10

文章信息/Info

Title:
Research on Tibetan Ujin Ancient Book Character Recognition Based on Attention Mechanism
文章编号:
1673-629X(2023)10-0163-08
作者:
童 攀123 龙炳鑫123 拥 措123 *
1. 西藏大学 信息科学技术学院,西藏 拉萨 850000;
2. 西藏大学 藏文信息技术人工智能西藏自治区重点实验室,西藏 拉萨 850000;
3. 西藏大学 藏文信息技术教育部工程研究中心,西藏 拉萨 850000
Author(s):
TONG Pan123 LONG Bing-xin123 YONG Cuo123*
1. School of Information Science and Technology,Tibet University,Lhasa 850000,China;
2. Key Laboratory of Tibetan Information Technology and Artificial Intelligence of Tibet Autonomous Region,Tibet University,Lhasa 850000,China;
3. Engineering Research Center of Tibetan Information Technology of Ministry of Education,Tibet University,Lhasa 850000,China
关键词:
藏文古籍文字识别乌金体注意力机制字丁准确率
Keywords:
ancient books in Tibetantext recognitionthe sharply bodymechanism of attentionaccuracy of character
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 10. 025
摘要:
藏文乌金体古籍文字识别是古籍文字识别领域的一个难题。 针对藏文乌金体古籍中存在的文字粘连和背景复杂问题,提出一种基于注意力机制的藏文乌金体古籍文字识别方法。 该方法主要包含两部分,编码器部分采用卷积神经网络(CNN) 与双向长短期记忆( Bi-LSTM) 获得图像文本的特征序列和序列标注,解码器部分使用注意力机制计算注意力权重并与循环神经网络( RNN) 相结合得出识别结果。 采用实验室的 616 张藏文乌金体古籍作为实验数据集以及藏文字丁准确率作为实验评测指标。 采用两种文字识别模型作为基线模型,从模型大小和识别率进行对比,文中识别模型在模型大小和识别效果上都优于其他两个模型,文中模型大小 41. 2 MB,相比基线模型中最小的优化了 36 MB,字丁识别准确率90. 55% ,相比基线模型中最好的结果提高了 7. 94 百分点。 表明所提出的基于注意力机制的藏文乌金体古籍识别模型,显著提高了藏文乌金体古籍中的粘连文字和背景复杂图像的识别效果。
Abstract:
The Tibetan Ujin ancient book character recognition is a difficult problem in the field of ancient book character recognition.Aiming at the problems of text adhesion?
and complex background in Tibetan Ujin ancient book character recognition, we propose anattention mechanism based recognition method for Tibetan Ujin ancient books,which consists of two parts. The encoder adopts the convolutional neural network ( CNN) and Bi-LSTM to obtain the feature sequence and sequence annotation of image text. The decoder usesthe attention mechanism to calculate the attention weight and obtains the recognition result by combining the method of recurrent neuralnetwork ( RNN) . 616 Tibetan Ujin ancient books in the laboratory are used as the experimental data set and the accuracy rate of Tibetancharacters is used?
as the experimental evaluation index. Two text recognition models are used as the baseline model. Compared with themodel size and recognition rate,the proposed recognition model is superior to the other two models in terms of model size and recognitioneffect. The size of proposed recognition model is 41. 2 MB,which is optimized by 36 MB compared with the smallest baseline model.The recognition accuracy of character block is 90. 55% ,which is 7. 94% higher than the best result?
in the baseline model. It is showedthat the proposed recognition model of Tibetan Ujin ancient books based on attention mechanism significantly improves the recognitioneffect of text adhesiont and complex background images in Tibetan Ujin ancient books.

相似文献/References:

[1]陈梓洋,王宇飞,钱侃,等. 自然场景下基于区域检测的文字识别算法[J].计算机技术与发展,2015,25(07):230.
 CHEN Zi-yang,WANG Yu-fei,QIAN Kan,et al. Character Recognition Algorithm Based on Region Detection in Natural Scene[J].,2015,25(10):230.
[2]任荣梓,高航. 基于反馈合并的中英文混排版面OCR技术研究[J].计算机技术与发展,2017,27(03):39.
 REN Rong-zi,GAO Hang. Investigation on Layout Analysis Technology of Chinese and English Mixed OCR Based on Feedback Merging[J].,2017,27(10):39.
[3]张婷婷,马明栋,王得玉.OCR 文字识别技术的研究[J].计算机技术与发展,2020,30(04):85.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 016]
 ZHANG Ting-ting,MA Ming-dong,WANG De-yu.Research on OCR Technology[J].,2020,30(10):85.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 016]
[4]章 安,马明栋.基于 Tesseract 文字识别的预处理研究[J].计算机技术与发展,2021,31(01):73.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 013]
 ZHANG An,MA Ming-dong.Research on Preprocessing Based on Tesseract Text Recognition[J].,2021,31(10):73.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 013]
[5]曾 悦,马明栋.基于 Tesseract_OCR 文字识别的研究[J].计算机技术与发展,2021,31(11):76.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 013]
 ZENG Yue,MA Ming-dong.Research on Text Recognition Based on Tesseract_OCR[J].,2021,31(10):76.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 013]
[6]蒋子敏,刘宁钟,沈家全.基于轻量级网络的 PCB 芯片文字识别[J].计算机技术与发展,2021,31(12):55.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 010]
 JIANG Zi-min,LIU Ning-zhong,SHEN Jia-quan.PCB Chip Text Recognition Based on Lightweight Network[J].,2021,31(10):55.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 010]

更新日期/Last Update: 2023-10-10