[1]陈怡君,任春年,党妍洁,等.一种带有附加记忆策略的改进教与学优化算法[J].计算机技术与发展,2023,33(09):208-214.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 031]
 CHEN Yi-jun,REN Chun-nian,DANG Yan-jie,et al.An Improved TLBO Algorithm with Additional Memory Strategy[J].,2023,33(09):208-214.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 031]
点击复制

一种带有附加记忆策略的改进教与学优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年09期
页码:
208-214
栏目:
新型计算应用系统
出版日期:
2023-09-10

文章信息/Info

Title:
An Improved TLBO Algorithm with Additional Memory Strategy
文章编号:
1673-629X(2023)09-0208-07
作者:
陈怡君1 任春年2 党妍洁2 李会荣2
1. 西安航空学院 图书馆,陕西 西安 710077;
2. 商洛学院 数学与计算机应用学院,陕西 商洛 726000
Author(s):
CHEN Yi-jun1 REN Chun-nian2 DANG Yan-jie2 LI Hui-rong2
1. Library,Xi’an Aeronautical University,Xi’an 710077,China;
2. Department of Mathematics and Computer Application,Shangluo University,Shangluo 726000,China
关键词:
教与学优化智能优化局部最优记忆策略随机学习策略
Keywords:
teaching learning based optimizationintelligent optimizationlocal optimummemory strategyrandom learning strategy
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 09. 031
摘要:
教与学优化算法是一种模拟班级教学现象的新型群体智能优化算法,算法参数简单,收敛速度快,已经在函数优化、工程计算等领域取得广泛应用。 但是算法后期容易陷
入局部收敛,为此提出了一种带有附加记忆策略的教与学优化(MTLBO) 算法。 该算法首先在教学阶段增加教师记忆策略,学生的历史记忆知识与教师历史教学能力对提
高班级的整体教学水平具有重要的作用,在每次更新学习者的同时考虑教师上一代的最优值和当代的最优值,有效增强算法局部搜索能力;在学习阶段增加个体向最优个体和随机个体学习策略,多个学生互相学习,充分利用班级内的知识信息,从而增强了算法的全局搜索能力。 采用具有不同特征的多个测试函数对算法进行仿真实验,并与基
本 TLBO 算法和 2 种改进的TLBO 算法进行对比分析,结果表明提出的 MTLBO 算法在获得较高的收敛精度和稳定性的同时还提高了收敛速度,有效避免算法局部收敛。
Abstract:
Teaching learning based optimization is a new type of swarm intelligence optimization algorithm that simulates class teachingphenomena. With simple parameters?
and fast convergence speed,the algorithm has been widely used in function optimization,engineeringcalculation and other fields. However,the algorithm tends to fall into local convergence later,so the modified teaching learning based optimization ( MTLBO) with additional memory strategy is proposed. The teachers’ memory strategy is added in the teaching stage and thestudents爷 historical memory knowledge and teachers’ historical teaching ability play an important role in improving
?the overall teachinglevel of the class. When updating learners each time, the optimal value of the previous generation and the current optimal value ofteachers are considered, effectively enhancing the local search ability of the algorithm. In the learning stage, the individual learningstrategies are added to the optimal individual?
and random individual,so that multiple students can learn from each other and make full useof the knowledge information in the class,thus enhancing the global search ability of the algorithm. The proposed algorithm is simulatedby multiple test functions with different characteristics, and compared with the basic TLBO algorithm and two improved TLBOalgorithms. It is showed that the proposed MTLBO algorithm not only achieves higher convergence accuracy and stability, but alsoimproves the convergence speed,effectively avoiding the local convergence of the algorithm.

相似文献/References:

[1]杨树欣[],李盼池[]. 和声搜索算法的改进研究[J].计算机技术与发展,2015,25(04):93.
 YANG Shu-xin[],LI Pan-chi[]. Research on Improvement of Harmony Search Algorithm[J].,2015,25(09):93.
[2]秦爽,黄先锋,张帆,等.基于 Nelder-Mead 算法的 3D 打印模型最优化放置[J].计算机技术与发展,2018,28(11):12.[doi:10.3969/ j. issn.1673-629X.2018.11.003]
 QIN Shuang,HUANG Xian-feng,ZHANG Fan,et al.Orientation Optimization of 3D Printed Model Based on Nelder-Mead Algorithm[J].,2018,28(09):12.[doi:10.3969/ j. issn.1673-629X.2018.11.003]

更新日期/Last Update: 2023-09-10