[1]朱晓雨,曹自平,崔红涛.超声波穿金属无线通信噪声智能抑制方法研究[J].计算机技术与发展,2023,33(09):190-195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 028]
 ZHU Xiao-yu,CAO Zi-ping,CUI Hong-tao.Research on Intelligent Noise Suppression Method of Ultrasonic through Metal Wireless Communication[J].,2023,33(09):190-195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 028]
点击复制

超声波穿金属无线通信噪声智能抑制方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年09期
页码:
190-195
栏目:
新型计算应用系统
出版日期:
2023-09-10

文章信息/Info

Title:
Research on Intelligent Noise Suppression Method of Ultrasonic through Metal Wireless Communication
文章编号:
1673-629X(2023)09--0190-06
作者:
朱晓雨曹自平崔红涛
南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
ZHU Xiao-yuCAO Zi-pingCUI Hong-tao
School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
神经网络超声波通信回波消除深度学习盲源分离
Keywords:
neural networkultrasonic communicationecho cancellationdeep learningblind source separation
分类号:
TP399
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 09. 028
摘要:
超声波是面向密闭金属腔体内外间进行无线通信时一种较为理想的信息传输媒介,回波是超声波穿金属无线通信系统的主要噪声来源。 针对现有超声波穿金属无线通信系统中回波消除技术的局限,该文引入深度学习方法来实现一种新的回波消除技术方案进行通信接收端信号信噪比的改善。 搭建了由摄像头、发射端 FPGA、发射端超声换能器、金属铝块、接收端超声换能器和接收端 FPGA 组成的试验型超声波穿金属无线通信系统,作为信道的铝块其厚度为 50 mm,基带频率为 10 MHz。 使用全卷积时域音频分离网络对超声波穿金属通信系统接收端的信号进行盲源分离,模型经过 45 次训练后较好实现了去除混合信号中的无用噪声而增强超声波信号的信噪比,在通信速率 2 Mbps 条件下实现了 13. 57 dB的 SDR 提升量和 39. 70 dB 的 SI-SDR 提升量。
Abstract:
Ultrasonic wave is a kind of ideal information transmission medium for wireless communication between the inside and outsideof closed metal cavity. Echo is the?
main noise source of ultrasonic wireless communication system through metal. Aiming at thelimitation of echo cancellation technology in the existing ultrasonic?
metal-penetrating wireless communication system,we introduce a newecho cancellation technology scheme to improve the signal to noise ratio of communication receiver. An experimental ultrasonic metal-penetrating wireless communication system composed of camera, transmitter FPGA, transmitter ultrasonic transducer, metal - aluminumblock,receiver ultrasonic transducer and receiver FPGA was built. The thickness of the aluminum block as the channel was 50 mm and the base band frequency was 10 MHz. The blind source separation of the signals at the receiving end of the ultrasonic metalcommunication system is carried out by using the full convolution time domain audio separation network. After 45 training,the model caneffectively remove the useless noise in the mixed signal and enhance the signal - to - noise ratio of the ultrasonic signal. Under thecondition of communication rate of 2 Mbps,13. 57 dB SDR boost and 39. 70 dB SI-SDR boost are achieved.

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(09):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(09):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(09):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(09):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(09):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(09):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(09):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(09):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(09):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(09):117.

更新日期/Last Update: 2023-09-10