[1]王 彪,毋 涛.基于卷积神经网络的面料检索系统[J].计算机技术与发展,2023,33(09):52-56.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 008]
 WANG Biao,WU Tao.Fabric Retrieval System Based on Convolutional Neural Network[J].,2023,33(09):52-56.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 008]
点击复制

基于卷积神经网络的面料检索系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年09期
页码:
52-56
栏目:
软件技术与工程
出版日期:
2023-09-10

文章信息/Info

Title:
Fabric Retrieval System Based on Convolutional Neural Network
文章编号:
1673-629X(2023)09-0052-05
作者:
王 彪毋 涛
西安工程大学 计算机科学学院,陕西 西安 710600
Author(s):
WANG BiaoWU Tao
School of Computer Science,Xian Polytechnic University,Xi爷n 710600,China
关键词:
迁移学习VGG16损失函数faiss面料检索
Keywords:
transfer learningVGG16loss functionfaissfabric retrieval
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 09. 008
摘要:
针对目前市场上纺织面料图像种类多、视觉特征复杂、数据量大的特点,为解决传统图像检索方法存在的检索速度慢、检索精度低的问题,提出一种基于深度学习的面料
检索方法。 该方法采用迁移学习,微调 VGG16 网络的结构,加入BN 层提高模型的泛化能力,调整 FC 层神经元的数量减少计算量。 同时优化损失函数以约束模型学习相似或相同的面料的特征也相似。 以纺织企业提供的面料为数据集训练模型,得到提取面料特征的网络模型。 进行在线面料检索时,使用faiss 向量检索工具,快速计算待检
索的面料的特征与特征库的相似度,得到相似度 top-k 的检索结果。 经过实验证明,在企业面料数据集上,该系统检索 mAP 可达到 0. 892,检索时间仅为 0. 012 s,均优于以往的算法,从而验证了其可行性。
Abstract:
Aiming at the characteristics of many types of textile fabric images on the market,complex visual features and large amount ofdata,in order to solve the problems of slow retrieval speed and low retrieval accuracy of traditional image retrieval methods, a fabricretrieval method based on deep learning is proposed. It adopts transfer learning,fine-tunes the structure of the VGG16 network,adds theBN layer to improve the generalization ability of the model,and adjusts the number of neurons in the FC layer to reduce the amount ofcomputation. At the same time,the loss function is optimized to constrain the model to learn the characteristics of similar or the samefabrics are also similar. Using the fabric provided by the textile enterprise as the data set to train the model, the network model forextracting fabric features is obtained. When conducting online fabric retrieval,the faiss vector retrieval tool is used to quickly calculate thesimilarity between the characteristics of the fabric to be retrieved and the feature library,and obtain the retrieval result of similarity top-k.Experiments show that on the enterprise fabric data set,the retrieval mAP of this system can reach 0. 892,and the retrieval time is only0. 012 seconds,which is better than that of the previous algorithm,thus verifying its feasibility.

相似文献/References:

[1]李 勇,刘战东,张海军.跨项目软件缺陷预测方法研究综述[J].计算机技术与发展,2020,30(03):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
 LI Yong,LIU Zhan-dong,ZHANG Hai-jun.Review on Cross-project Software Defects Prediction Methods[J].,2020,30(09):98.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 019]
[2]武苏雯,赵慧杰,刘 鑫,等.基于迁移学习的图像分类在诗词中的应用研究[J].计算机技术与发展,2021,31(07):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
 WU Su-wen,ZHAO Hui-jie,LIU Xin,et al.Research on Application of Image Classification Based onTransfer Learning in Poetry[J].,2021,31(09):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
[3]娄丰鹏,吴迪,荆晓远,等.增加度量元的迁移学习跨项目软件缺陷预测[J].计算机技术与发展,2018,28(07):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
 LOU Feng-peng,WU Di,JING Xiao-yuan,et al.Cross-project Software Defect Prediction Based on Transfer Learning with Metrics[J].,2018,28(09):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
[4]刘宇廷,倪颖杰.融合知识迁移学习的微博社团检测模型构建[J].计算机技术与发展,2018,28(09):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
 LIU Yu-ting,NI Ying-jie.Construction of Weibo Community Detection Model with Knowledge Transfer Learning[J].,2018,28(09):11.[doi:10.3969/j.issn.1673-629X.2018.09.003]
[5]王泽泓,刘厚泉.基于迁移学习与自适应特征融合的建筑物识别[J].计算机技术与发展,2019,29(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
 WANG Ze-hong,LIU Hou-quan.Building Recognition Based on Transfer Learning and Adaptive Feature Fusion[J].,2019,29(09):40.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 007]
[6]易 未,郑沫利,赵艳轲,等.基于小样本 SVR 的迁移学习及其应用[J].计算机技术与发展,2020,30(02):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
 YI Wei,ZHENG Mo-li,ZHAO Yan-ke,et al.Transfer Learning Based on Support Vector Regression Model for Small Sample Data and Its Applications[J].,2020,30(09):47.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 010]
[7]王新美,丁爱玲,雷梦宁,等.基于 CNN 和 SVM 融合的交通标志识别[J].计算机技术与发展,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
 WANG Xin-mei,DING Ai-ling,LEI Meng-ning,et al.Traffic Sign Recognition Based on Combination of CNN and SVM[J].,2020,30(09):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 002]
[8]龚 安,井晓萌.多卷积神经网络模型融合的农作物病害图像识别[J].计算机技术与发展,2020,30(08):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
 GONG An,JING Xiao-meng.Image Recognition of Crop Diseases Based on Multi-convolution Neural Network Model Ensemble[J].,2020,30(09):134.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 023]
[9]龚 安,郭文婷.基于卷积神经网络的皮肤癌识别方法[J].计算机技术与发展,2020,30(10):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
 GONG An,GUO Wen-ting.Skin Cancer Image Classification Method Based on Convolutional Neural Network[J].,2020,30(09):167.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 030]
[10]张泽宇,郭 斌,张太红*.基于 DCNN 的马匹图像分割算法研究[J].计算机技术与发展,2020,30(10):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]
 ZHANG Ze-yu,GUO Bin,ZHANG Tai-hong.Research on Horse Image Segmentation Algorithm Based on DCNN[J].,2020,30(09):210.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 037]

更新日期/Last Update: 2023-09-10