[1]郭英清,王 敏,肖明胜.结合深度知识追踪与矩阵补全的习题推荐方法[J].计算机技术与发展,2023,33(07):188-195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 028]
 GUO Ying-qing,WANG Min,XIAO Ming-sheng.Recommended Exercise Combining Deep Knowledge Tracking and Matrix Completion[J].,2023,33(07):188-195.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 028]
点击复制

结合深度知识追踪与矩阵补全的习题推荐方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年07期
页码:
188-195
栏目:
人工智能
出版日期:
2023-07-10

文章信息/Info

Title:
Recommended Exercise Combining Deep Knowledge Tracking and Matrix Completion
文章编号:
1673-629X(2023)07--0188-08
作者:
郭英清1 王 敏12 肖明胜1
1. 赣南师范大学 数学与计算机科学学院,江西 赣州 341000;
2. 江西省数值模拟与仿真技术重点实验室,江西 赣州 341000
Author(s):
GUO Ying-qing1 WANG Min12 XIAO Ming-sheng1
1. School of Mathematics and Computer Science,Gannan Normal University,Ganzhou 341000,China;
2. Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques,Ganzhou 341000,China
关键词:
习题推荐深度知识追踪矩阵分解矩阵补全教育数据挖掘
Keywords:
exercise recommendationdeep knowledge tracingmatrix decompositionmatrix completioneducation data minin
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 07. 028
摘要:
精准的习题推荐是智慧教学中的重要内容,具有非常重要的研究和实践意义,如何在数据稀疏的情况下,从学习者答题记录中对学习者知识建模一直是习题推荐的研究重点。 对此,针对现有的习题推荐方法存在数据稀疏和忽略群体特征的问题,提出一种结合深度知识追踪与矩阵补全的习题推荐算法。 该算法分为知识水平建模和矩阵补全两个模块。首先,通过深度知识追踪模型训练得到学习者知识水平矩阵,实现对学习者知识水平建模,精准挖掘学习者知识概念掌握水平;其次,考虑学习者的近邻信息,利用学习者之间的群体特征,融合相似用户的知识水平;最后,引入矩阵分解模块进行知识矩阵补全,对学习者未做习题进行得分预测,从而缓解数据稀疏问题。 该推荐算法同时考虑到学习者的群体共性和学习者知识水平矩阵稀疏问题。 与其他算法相比,该算法有效地提升了推荐结果的精确度、召回率和 F1 值,且随着习题推荐数量的增加,算法的性能优势越明显。
Abstract:
Accurate exercise recommendation is an important issue in intelligent teaching,which has quite important research?
and practicalsignificance. How to model learner knowledge from learner answer records has always been the research focus in exerciserecommendation under sparse data. Therefore,an exercise recommendation algorithm combining deep knowledge tracking and knowledgematrix complementation is proposed to address the problems of sparse data and ignoring group features in existing exerciserecommendation methods, which is divided into two modules: knowledge?
level modeling and knowledge matrix complementation.Firstly,the learner knowledge level matrix is obtained through?
the training of deep knowledge tracking model. By this way,it realizes theknowledge level modeling of learners and accurately explores the mastery level of learners’ knowledge concepts. Secondly,the knowledgelevel of similar users is fused by considering the near - neighbor information of learners and using the group features among learners.Finally,
the matrix decomposition module is introduced to perform the knowledge matrix complementation. It can predict the score oflearners’ undone exercises and has the advantage of alleviating the data sparsity problem. The recommendation algorithm takes into consideration both the group commonality of learners and the sparse matrix of learners’ knowledge levels. The proposed algorithm effectivelyimproves the accuracy, recall and F1 value of the recommendation results compared with the other algorithm, and its performanceadvantage becomes more obvious as the number of exercises recommended increases.
更新日期/Last Update: 2023-07-10