[1]朱联祥*,仝文东,牛文煜,等.多尺度特征融合 ESRGAN 的岩石显微图像超分辨研究[J].计算机技术与发展,2023,33(07):55-60.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 008]
 ZHU Lian-xiang*,TONG Wen-dong,NIU Wen-yu,et al.Research on Rock Micro-image Super-resolution Based on Multiscale-fusion Feature ESRGAN[J].,2023,33(07):55-60.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 008]
点击复制

多尺度特征融合 ESRGAN 的岩石显微图像超分辨研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年07期
页码:
55-60
栏目:
媒体计算
出版日期:
2023-07-10

文章信息/Info

Title:
Research on Rock Micro-image Super-resolution Based on Multiscale-fusion Feature ESRGAN
文章编号:
1673-629X(2023)07-0055-06
作者:
朱联祥* 仝文东牛文煜邵浩杰
西安石油大学 计算机学院,陕西 西安 710065
Author(s):
ZHU Lian-xiang* TONG Wen-dongNIU Wen-yuSHAO Hao-jie
School of Computer Science,Xi’ an Shiyou University,Xi’ an 710065,China
关键词:
岩石显微图像深度学习超分辨率重建生成对抗网络密集卷积网络多尺度特征融合
Keywords:
rock micro - image deep learning super - resolution reconstruction generative adversarial network dense convolutional networksmultiscale feature fusion
分类号:
TP317. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 07. 008
摘要:
岩石显微图像可以反映油气藏的分布情况,对石油勘探等行业具有很高的应用价值。 针对岩石显微图像在超分辨处理时存
在岩石特性模糊、分辨率低、丢失细节信息等问题,基于 ESRGAN 和多尺度特征融合,对网络结构进行优化,在ESRGAN 的 RRDB 块中加入多尺度特征融合方法,提出一种岩石显微图像超分辨率重建算法。 采用 DRSRD1_2D 岩石显微图像数据集进行 4 倍超分辨重建实验,通过峰值信噪比( PSNR) 、结构相似性(SSIM)及感知系数(PI) 对重建结果进行评价,并将所提算法与 SRGAN、SFT-GAN、ESRGAN 方法进行对比。 结果表明:在碳酸岩数据集上,该算法的三项指标在几种算法中均为最优;在砂岩数据集上,该算法的 PSNR 和 PI 指标最优,SSIM 则为次优。 此外,该算法在视觉效果上也有着良好表现,能更好地表达图像的细节特征。
Abstract:
Rock microscopic images can reflect the distribution of oil and gas reservoirs,and has high application value for petroleum exploration and other industries. In order to solve the problems of fuzzy rock characteristics,low resolution
and loss of detail information,we propose a rock micro images super-resolution reconstruction algorithm based on ESRGAN and multi-scale feature fusion,with theadding of multi-scale feature fusion method to the RRDB block of ESRGAN. DRSRD1_2D rock microscopic image data set is used forthe experimental test of proposed method in 4x super - resolution and its performance is compared to that of SRGAN,SFT - GAN andESRGAN regarding to Peak?
Signal to Noise Ratio ( PSNR) ,Structural Similarity ( SSIM) and Perceptual Index ( PI) . The results showthat all three performance indexes of proposed method are the best among them on carbonatite data set,and PSNR and PI indexes ofwhich are the best,and SSIM index second best on sandstone data set. Meanwhile,the proposed method has a good visual effect of re-constructed image where better details can be manifested.

相似文献/References:

[1]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(07):19.
[2]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(07):1.
[3]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(07):1.
[4]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(07):7.
[5]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].,2017,27(07):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
[6]吴 超,邵 曦.基于深度学习的指静脉识别研究[J].计算机技术与发展,2018,28(02):200.[doi:10.3969/j.issn.1673-629X.2018.02.043]
 WU Chao,SHAO Xi.Research on Finger Vein Recognition Based on Deep Learning[J].,2018,28(07):200.[doi:10.3969/j.issn.1673-629X.2018.02.043]
[7]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(07):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[8]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(07):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[9]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(07):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[10]王嘉文,王传栋,杨雁莹.一种中文人名识别的训练架构[J].计算机技术与发展,2018,28(07):53.[doi:10.3969/ j. issn.1673-629X.2018.07.012]
 WANG Jia-wen,WANG Chuan-dong,YANG Yan-ying.A Training Framework for Chinese Name Recognition[J].,2018,28(07):53.[doi:10.3969/ j. issn.1673-629X.2018.07.012]

更新日期/Last Update: 2023-07-10