[1]祁天龙,任美睿,赵建宇,等.基于聚类的协作学习分组方法[J].计算机技术与发展,2023,33(06):189-193.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 028]
 QI Tian-long,REN Mei-rui,ZHAO Jian-yu,et al.Collaborative Learning Grouping Method Based on Clustering[J].,2023,33(06):189-193.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 028]
点击复制

基于聚类的协作学习分组方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
189-193
栏目:
新型计算应用系统
出版日期:
2023-06-10

文章信息/Info

Title:
Collaborative Learning Grouping Method Based on Clustering
文章编号:
1673-629X(2023)06--0189-05
作者:
祁天龙1 任美睿12 赵建宇1 郭龙江12
1. 陕西师范大学 计算机科学学院,陕西 西安 710062;
2. 陕西师范大学 现代教学技术教育部重点实验室,陕西 西安 710062
Author(s):
QI Tian-long1 REN Mei-rui12 ZHAO Jian-yu1 GUO Long-jiang12
1. School of Computer Science,Shaanxi Normal University,Xi’ an 710062,China;
2. Key Laboratory of Modern Teaching Technology of Ministry of Education,Shaanxi Normal University,Xi’ an 710062,China
关键词:
协作学习在线学习分组方法聚类满意度时间重合度
Keywords:
collaborative learningonline learninggrouping methodclusteringsatisfactiontime coincidence
分类号:
TP391. 7
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 028
摘要:
协作学习能够促进在线学习平台中学习者之间的沟通交流。 同一小组内学习者共同协作完成既定任务过程中,不仅可以巩固已有知识,也能通过互相学习,获得新知识和新技能,在提高个人表现的同时,增加学习兴趣,从而有效地降低辍学率。 近年来已提出了很多协作学习分组方法。 然而,现有分组方法没有兼顾主题意愿、学习时间规律和小组规模这三个对小组沟通效率有重要影响的因素。 该文依据学习者的主题意愿预分组,然后依据学习时间规律迭代地调用聚类算法将学习者划分到满足上下限的小组中,结果表明,上述方法形成的协作学习小组在满意度和时间重合度上均优于IFST 和随机分组方法。 最后,以 XuetangX 平台上的 1 754 名学习者为实验对象进行协作学习分组,实验结果表明,形成的小组有充分的协作学习时间,指派的主题能够很好地满足学习者的意愿,且各个小组之间成员数均衡。
Abstract:
Collaborative learning can promote communication between learners on the online learning platform. When learners in the samegroup collaborate to complete the established task,they?
can not only consolidate the existing knowledge,but also acquire new knowledgeand new skills through mutual learning. While improving individual performance, they can increase their interest in learning, thuseffectively reducing the dropout rate. In recent years,many collaborative learning grouping methods have been proposed. However,theexisting grouping methods do not take into account the three factors which have important influence on the efficiency of group communication:topic willingness,learning time rule and group size. According to the learners‘ topic willingness,they are pre-grouped,and thenthe clustering algorithm is iteratively called according to the learning time rule to divide the learners into groups that meet the upper andlower limits. It is showed that the formed collaborative learning groups are better than IFST and random grouping methods in terms ofsatisfaction and time coincidence. Finally,1 754 learners on the XuetangX platform are taken as the experimental objects for collaborativelearning grouping. The experimental results show that the formed groups have sufficient collaborative learning time,the assigned topicscan well meet the wishes of learners,and the size of each group is balanced.

相似文献/References:

[1]王雪松 申群太.基于多Agent系统的自调节及协同工作的组合投资模型[J].计算机技术与发展,2010,(05):117.
 WANG Xue-song,SHEN Qun-tai.Combination Investment Model of Auto-Adjustment and Cooperate with Work Based on Multi-Agent System[J].,2010,(06):117.
[2]王娟 柴玉梅.基于多议题协商的贝叶斯学习[J].计算机技术与发展,2006,(02):154.
 WANG Juan,CHAI Yu-mei.A Bayesian Learning Based on Multi- Issues Negotiation[J].,2006,(06):154.
[3]尹晨.E-Learning协作学习中分组策略研究[J].计算机技术与发展,2012,(12):55.
 YIN Chen.Research of Grouping Strategy in E-Learning Collaborative Learning[J].,2012,(06):55.
[4]叶树鑫[],何聚厚[][]. 协作学习中基于协同过滤的学习资源推荐研究[J].计算机技术与发展,2014,24(10):63.
 YE Shu-xin[],HE Ju-hou[][]. esearch on Learning Material Recommendation Based on Collaborative Filtering Algorithm in Cooperative Learning[J].,2014,24(06):63.
[5]郭新. 一种改进的短期交通流量预测算法研究[J].计算机技术与发展,2015,25(02):103.
 GUO Xin. Research on an Improved Prediction Algorithm for Short-term Traffic Flow [J].,2015,25(06):103.
[6]何利雪,陈健. 基于ERBAC模式的在线考试模型研究与实现[J].计算机技术与发展,2015,25(04):139.
 HE Li-xue,CHEN Jian. Research and Realization of Online Test/Examination System Based on an ERBAC Model[J].,2015,25(06):139.
[7]徐新瑞,孟彩霞,周雯,等. 一种基于Spark时效化协同过滤推荐算法[J].计算机技术与发展,2015,25(06):48.
 XU Xin-rui,MENG Cai-xia,ZHOU Wen,et al. A Real-time Collaborative Filtering Recommendation Algorithm Based on Spark[J].,2015,25(06):48.
[8]佘雅莉,周 良.基于改进在线序列学习机的危险源识别算法[J].计算机技术与发展,2018,28(09):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
 SHE Ya-li,ZHOU Liang.Hazard Identification Algorithm Based on Improved Online Sequential Extreme Learning Machine[J].,2018,28(06):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
[9]吴 垒,于哲舟.基于概率神经网络的在线分类器[J].计算机技术与发展,2019,29(12):14.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 003]
 WU Lei,YU Zhe-zhou.An Improved Classifier Based on Probabilistic Neural Network[J].,2019,29(06):14.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 003]
[10]覃忠台,张明军.基于协同过滤算法的学习资源推荐模型研究[J].计算机技术与发展,2021,31(09):31.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 006]
 QIN Zhong-tai,ZHANG Ming-jun.Research on Learning Resource Recommendation Model Based on Collaborative Filtering Algorithm[J].,2021,31(06):31.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 006]

更新日期/Last Update: 2023-06-10