[1]薛 锋,张雅文,陈思光.基于 D2D 协同的边缘计算迁移机制研究[J].计算机技术与发展,2023,33(06):117-124.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 018]
 XUE Feng,ZHANG Ya-wen,CHEN Si-guang.Research on Edge Computing Offloading Mechanism Based on D2D Collaboration[J].,2023,33(06):117-124.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 018]
点击复制

基于 D2D 协同的边缘计算迁移机制研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
117-124
栏目:
移动与物联网络
出版日期:
2023-06-10

文章信息/Info

Title:
Research on Edge Computing Offloading Mechanism Based on D2D Collaboration
文章编号:
1673-629X(2023)06-0117-08
作者:
薛 锋张雅文陈思光
南京邮电大学 物联网学院,江苏 南京 210003
Author(s):
XUE FengZHANG Ya-wenCHEN Si-guang
School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
边缘计算计算迁移资源分配D2D 通信用户协同动态权重
Keywords:
edge computingcomputation offloadingresource allocationD2D communicationuser collaborationdynamic weight
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 018
摘要:
为了缓解边缘网络通信压力、降低物联网设备对服务节点的计算与通信负荷,提出了一种基于 Device-to-Device(D2D) 协同的边缘计算迁移机制。 具体而言,通过综合考虑 D2D 设备、边缘节点
的迁移决策以及传输功率分配,规划了一个任务完成总能耗最小化的优化问题,进一步,定义了 D2D 设备的积极性度量约束以促进 D2D 设备与普通用户间的协作。 同时,提出了基于动态感知蝙蝠群体的高效计算迁移算法( Dynamic Sensing Bat Population-Based Efficient ComputationOffloading Algorithm,DSBP-ECOA) 。 该算法融合经典蝙蝠算法思想,引入一种自适应的动态惯性权重,以通过实时感知环境变化调整蝙蝠群体的移动方向和速度,并采用混沌映射理论对种群进行初始化。 最后,仿真结果表明,所提方案能够以较快的速度收敛,并获得最优迁移和功率分配策略,与其他几种基准方案相比,该方案在降低系统能耗方面具有较大的优势。
Abstract:
In order to relieve the communication pressure of edge network and reduce the computing and communication load of Internetof Things ( IoT) devices to service nodes,we propose an edge computing offloading mechanism based on Device-to -Device ( D2D)collaboration. Specifically,based on the comprehensive consideration of offloading decisions and transmission power allocation,an optimization problem that minimizes the total energy consumption of task completion is formulated. Furthermore, the motivationmeasurement constraint of D2D device is defined to promote collaboration between cooperation users and common users. At the sametime,an efficient computation offloading algorithm based on dynamic sensing of bat population ( DSBP - ECOA) is proposed. Thealgorithm combines the ideas of classical bat algorithm,and introduces an adaptive dynamic inertia weight. Through sensing environmentin real time to adjust the movement direction and speed of bat population, and the chaotic mapping theory is used to initialize thepopulation. Finally, the simulation results show that the proposed scheme can converge at a faster speed, and achieve the optimaloffloading and power allocation strategy. Compared with other benchmark schemes,the proposed scheme has significant advantages in?
reducing system energy consumption.

相似文献/References:

[1]沈大港,范鹏飞,周慧娟,等.面向车联网基于边缘计算的点对点信息传输[J].计算机技术与发展,2021,31(08):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]
 SHEN Da-gang,FAN Peng-fei,ZHOU Hui-juan,et al.Point-to-point Information Communication Based on Edge Computing for Internet of Vehicle[J].,2021,31(06):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]
[2]张云飞,高 岭,丁彩玲,等.边缘计算环境下改进蚁群算法的任务调度算法[J].计算机技术与发展,2021,31(09):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 015]
 ZHANG Yun-fei,GAO Ling,DING Cai-ling,et al.Improved Task Scheduling Algorithm of Ant Colony Algorithm in Edge Computing[J].,2021,31(06):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 015]
[3]王 闯,沈苏彬.一种基于多智能体的分布式深度神经网络算法[J].计算机技术与发展,2021,31(12):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
 WANG Chuang,SHEN Su-bin.A Distributed Deep Neural Network Algorithm Based on Multi-agent[J].,2021,31(06):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
[4]葛欣炜,段聪颖,陈思光.基于雾计算的能耗最小化公平计算迁移研究[J].计算机技术与发展,2022,32(03):107.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 018]
 GE Xin-wei,DUAN Cong-ying,CHEN Si-guang.Fog Computing Based Energy Minimization and Fair Computation Offloading Mechanism[J].,2022,32(06):107.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 018]
[5]钟云峰,宋伟宁.基于云边协同多任务计算卸载策略[J].计算机技术与发展,2022,32(04):69.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 012]
 ZHONG Yun-feng,SONG Wei-ning.Multi-task Computation Offloading Strategy Based on Cloud-side Collaboration[J].,2022,32(06):69.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 012]
[6]赵尚维康,孙 君.工业物联网中基于 SMDP 的协同卸载方案[J].计算机技术与发展,2022,32(09):76.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 012]
 ZHAO Shang-wei-kang,SUN Jun.Multi-MEC Collaborative Computing Unloading Scheme Based on SMDP in Industrial Internet of Things[J].,2022,32(06):76.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 012]
[7]林广栋,黄光红,陆俊峰.一款人工智能芯片上 FCOS 模型的应用研究[J].计算机技术与发展,2023,33(05):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 002]
 LIN Guang-dong,HUANG Guang-hong,LU Jun-feng.Application of FCOS Model on an AI Chip[J].,2023,33(06):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 002]
[8]张海超,赖金山,刘 东,等.边缘计算下的轻量级联邦学习隐私保护方案[J].计算机技术与发展,2023,33(09):161.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 024]
 ZHANG Hai-chao,LAI Jin-shan,LIU Dong,et al.Lightweight Federated Learning Privacy Protection Scheme under Edge Computing[J].,2023,33(06):161.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 024]
[9]王志良,何 刚*,俞文心,等.边缘场景下动态联邦学习优化方法[J].计算机技术与发展,2024,34(02):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]
 WANG Zhi-liang,HE Gang*,YU Wen-xin,et al.Dynamic Federated Learning Optimization Method in Edge Scenarios[J].,2024,34(06):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]

更新日期/Last Update: 2023-06-10