[1]金浩宇,霍 宏,方 涛.时序优先级约束的时序模式图强模拟匹配[J].计算机技术与发展,2023,33(06):88-94.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 014]
 JIN Hao-yu,HUO Hong,FANG Tao.Temporal Priority Constrained Graph Pattern Strong Simulation Matching[J].,2023,33(06):88-94.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 014]
点击复制

时序优先级约束的时序模式图强模拟匹配()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
88-94
栏目:
软件技术与工程
出版日期:
2023-06-10

文章信息/Info

Title:
Temporal Priority Constrained Graph Pattern Strong Simulation Matching
文章编号:
1673-629X(2023)06-0088-07
作者:
金浩宇霍 宏方 涛
上海交通大学 电子信息与电气工程学院,上海 200240
Author(s):
JIN Hao-yuHUO HongFANG Tao
School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
关键词:
模式图匹配时态图强模拟图模拟时序模式图
Keywords:
graph pattern matchingtemporal graphstrong simulationgraph simulationtemporal graph pattern
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 014
摘要:
图模式匹配是一种在图数据上进行高效查询的重要方法,有着广泛的应用前景,例如知识发现、社交网络分析、智能问答等。 大多数现有的研究工作都是基于静态的图数据,而现实生活中的图数
据很多属于包含时间信息的时态图,针对时态图上的模式图匹配,该文提出了一种时序优先级约束的时序模式图强模拟匹配算法( Temporal Priority ConstrainedGraph Pattern Strong Simulation Matching,TPC-GPSSM) 。 该算法在模式图的图拓扑结构的匹配过程中加入时间顺序约束,即考虑了时态图中不同时态边之间的时序优先级,同时通过设置冗余顶点过滤规则来缩小搜索范围,优
化时序检查的队列顺序,以达到提前剪枝、减少计算复杂度的目的。 提出了时态边聚合度来评价算法对时态边的过滤效果,在三个时序数据集上的大量实验表明,相比传统的强模拟算法,所提算法能够有效过滤错误结果,并且在不同规模的数据图上均具有良好的性能表现。
Abstract:
Graph pattern matching is an important method for efficient query on graph data,which has wide application prospects,such asknowledge discovery,intelligent question answering,social network analysis, and so on. Most of the existing researches are generallybased on static graph data. However,many graph data with time information in real world belong to temporal?
graphs. Aiming at graphpattern matching in temporal graphs,a temporal priority constrained graph pattern strong simulation matching method is proposed. It introduces the constraints?
of time orders into the pattern graph matching as while matching the graph topology of pattern graphs,namely,itconsiders the temporal priorities of different temporal edges in temporal?
graphs. Meanwhile,redundant vertex filtering rules are set tonarrow the search scope and optimize the queue of time order, so as to prune the graph in advance and reduce the computationalcomplexity. Moreover,the temporal edge closeness is proposed to evaluate the algorithm' s performance by the filtering effects ontemporal edges. Experiments results on three temporal datasets have shown that the proposed method can effectively filter out the errormatching results compared with the traditional strong simulation algorithm, and also has satisfactory performance on data graphs ofdifferent scales.
更新日期/Last Update: 2023-06-10