相似文献/References:
[1]施冬冬 贾瑞玉 黄义堂.基于遗传算法的高维离群点检测算法的改进[J].计算机技术与发展,2009,(03):141.
SHI Dong-dong,JIA Rui-yu,HUANG Yi-tang.An Improved High-Dimensional Outlier Detection Algorithm Based on Genetic Algorithm[J].,2009,(06):141.
[2]包小兵 翟素兰 程兰兰.基于信息熵加权的局部离群点检测算法[J].计算机技术与发展,2012,(09):59.
BAO Xiao-bing,ZHAI Su-lan,CHENG Lan-lan.SLOM Outlier Mining Algorithm Based on Entropy Weighted[J].,2012,(06):59.
[3]杨明,李铁冰,姜茸,等.基于AHP 的大数据可用性及挖掘方案模型研究[J].计算机技术与发展,2018,28(05):51.[doi:10.3969/j.issn.1673-629X.2018.05.012]
YANG Ming,LI Tie-bing,JIANG Rong,et al.Research on Model of Big Data Usability and Mining Strategy Based on AHP[J].,2018,28(06):51.[doi:10.3969/j.issn.1673-629X.2018.05.012]
[4]李 寒,余 斌,佟 宁,等.一种电力感知数据的离群点检测方案[J].计算机技术与发展,2020,30(02):153.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 030]
LI Han,YU Bin,TONG Ning,et al.An Electric Power Sensor Data Oriented Outlier Detection Solution[J].,2020,30(06):153.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 030]
[5]高亚星,赵旭俊,曹栩阳.基于融合数据自表示的离群点检测算法[J].计算机技术与发展,2023,33(12):41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 006]
GAO Ya-xing,ZHAO Xu-jun,CAO Xu-yang.An Outlier Detection Algorithm Based on Fusion Data Self-representation[J].,2023,33(06):41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 12. 006]