[1]游 兰,曾 晗,韩凡宇,等.基于 BERT-BiGRU 集成学习的情感语义识别[J].计算机技术与发展,2023,33(05):159-166.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 024]
 YOU Lan,ZENG Han,HAN Fan-yu,et al.Sentiment Semantic Recognition Based on BERT-BiGRU Ensemble Learning[J].,2023,33(05):159-166.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 024]
点击复制

基于 BERT-BiGRU 集成学习的情感语义识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年05期
页码:
159-166
栏目:
人工智能
出版日期:
2023-05-10

文章信息/Info

Title:
Sentiment Semantic Recognition Based on BERT-BiGRU Ensemble Learning
文章编号:
1673-629X(2023)05-0159-08
作者:
游 兰12 曾 晗12 韩凡宇13 金 红123 崔海波134 张家合14
1. 湖北大学 计算机与信息工程学院,湖北 武汉 430062;
2. 湖北省软件工程工程技术研究中心,湖北 武汉 430062;
3. 智慧政务与人工智能应用湖北省工程研究中心,湖北 武汉 430062;
4. 湖北省教育信息化工程技术研究中心,湖北 武汉 430062
Author(s):
YOU Lan12 ZENG Han12 HAN Fan-yu13 JIN Hong123 CUI Hai-bo134 ZHANG Jia-he14
1. School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China;
2. Engineering and Technical Research Center of Hubei Province in Software Engineering,Wuhan 430062,China;
3. Engineering Research Center of Hubei Province in Intelligent Government Affairs and Application of Artificial Intelligence,Wuhan 430062,China;
4. Engineering and Technical Research Center of Hubei Province in Educational Information,Wuhan 430062,China
关键词:
情感识别BERT 预训练模型双向门控循环单元集成学习深层特征
Keywords:
sentiment recognitionBERT pre-training modelbidirectional GRUensemble learningdeep feature
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 05. 024
摘要:
如今,在社交网络上发表评论已成为公众对社会现象表达态度和立场的主要方式。 精准识别社交文本的情感倾向性对于舆情管控、社会维稳等有重要价值。 针对传统情感识别模型大多集中于评论的表层语义挖掘,存在分类效果不佳、泛化能力有限等问题,提出了一种基于 BERT-BiGRU 多模集成学习的深层情感语义识别方法。 首先,通过 BERT 预训练模型获取评论文本的上下文语义特征表示,再结合 BiGRU 提取深层非线性特征向量,实现单模型下的最优效果;接着,为了使模型效果稳定且多方面表现均衡,基于 BERT 系列预训练模型训练出表现优异且具有差异化的多个情感分类器;最后,利用数据扰动和投票策略的集成学习方法,实现各模型深层特征的充分融合。 实验结果显示:BERT-BiGRU 模型相较于其他传统模型,在两个公开数据集( COV19 和 ChnSenti)上具有更优的情感识别效果。
Abstract:
Nowadays,posting comments on social networks has become one of the main means for the public to express their attitudes andstandpoints on social events. Accurately identifying the sentiment orientation of social texts is of great value for public opinions control,social stability maintenance,etc. Since the traditional sentiment recognition models only focus on mining?
surface semantic on comments,there are some problems such as poor classification effect and limited generalization ability. Aiming at these problems,we propose a deepsentiment semantic recognition model based on BERT-BiGRU multi-model ensemble learning. Firstly,the contextual semantic featurerepresentation of the comment text is obtained through the BERT pre-training model,and then BiGRU is combined to extract the deepnonlinear feature vectors to achieve the optimal sentiment recognition results under the single model. Next,in order to make the effect ofthe model stable and achieve balanced performance in many aspects,several differentiated emotion classifiers with excellent performanceare trained based on the BERT series pre-training model. Finally,the ensemble learning method of data disturbance and voting strategy isused to achieve the full integration of the deep features of each model. The experimental results on two public datasets ( COV19 andChnSenti) show that the model proposed has better sentiment recognition effects than other traditional models.

相似文献/References:

[1]韩志艳,伦淑娴,王健.基于遗传小波神经网络的语音情感识别[J].计算机技术与发展,2013,(01):75.
 HAN Zhi-yan,LUN Shu-xian,WANG Jian.Speech Emotion Recognition Based on Genetic Wavelet Neural Network[J].,2013,(05):75.
[2]韩志艳,王健. 多模式情感识别特征参数融合算法研究[J].计算机技术与发展,2016,26(05):27.
 HAN Zhi-yan,WANG Jian. Research on Feature Fusion Algorithm for Multimodal Emotion Recognition[J].,2016,26(05):27.
[3]李姗,徐珑婷. 基于语谱图提取瓶颈特征的情感识别算法研究[J].计算机技术与发展,2017,27(05):82.
 LI Shan,XU Long-ting. Research on Emotion Recognition Algorithm Based on Spectrogram Feature Extraction of Bottleneck Feature[J].,2017,27(05):82.
[4]李才隆,叶宁,黄海平,等.基于递归定量分析的生理信号情感识别[J].计算机技术与发展,2018,28(11):94.[doi:10.3969/ j. issn.1673-629X.2018.11.021]
 LI Cai-long,YE Ning,HUANG Hai-ping,et al.Physiological Signal Emotion Recognition Based on Recursive Quantitative Analysis[J].,2018,28(05):94.[doi:10.3969/ j. issn.1673-629X.2018.11.021]
[5]胡婷婷,沈凌洁,冯亚琴,等.语音与文本情感识别中愤怒与开心误判分[J].计算机技术与发展,2018,28(11):124.[doi:10.3969/j.issn.1673-629X.2018.11.028]
 HU Ting-ting,SHEN Ling-jie,FENG Ya-qin,et al.Research on Anger and Happy Misclassification in Speech and Text Emotion Recognition[J].,2018,28(05):124.[doi:10.3969/j.issn.1673-629X.2018.11.028]
[6]李田港,叶 硕,叶光明,等.基于集成学习的语音情感识别算法研究[J].计算机技术与发展,2020,30(06):82.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 016]
 LI Tian-gang,YE Shuo,YE Guang-ming,et al.Research on Speech Emotion Recognition Algorithm Based on Ensemble Learning[J].,2020,30(05):82.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 016]
[7]陶小梅*,陈心怡.在线学习环境中基于眼动特征情感识别研究[J].计算机技术与发展,2021,31(03):186.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 032]
 TAO Xiao-mei *,CHEN Xin-yi.Research on Emotion Recognition Based on Eye Movement Features in e-Learning Environment[J].,2021,31(05):186.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 032]
[8]赖佳扬,张晓滨,马瑛超.基于知识图谱的服装问答系统[J].计算机技术与发展,2023,33(02):99.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 015]
 LAI Jia-yang,ZHANG Xiao-bin,MA Ying-chao.Clothing Question Answering System Based on Knowledge Graph[J].,2023,33(05):99.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 015]

更新日期/Last Update: 2023-05-10