[1]赵金伟,刘杰东,邱万力,等.基于 LRTC-TNN 的瞬时水流量数据连续插值方法[J].计算机技术与发展,2023,33(05):35-41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 006]
 ZHAO Jin-wei,LIU Jie-dong,QIU Wan-li,et al.Continuous Imputation Method of Instantaneous Water Flow Data Based on LRTC-TNN[J].,2023,33(05):35-41.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 006]
点击复制

基于 LRTC-TNN 的瞬时水流量数据连续插值方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年05期
页码:
35-41
栏目:
大数据与云计算
出版日期:
2023-05-10

文章信息/Info

Title:
Continuous Imputation Method of Instantaneous Water Flow Data Based on LRTC-TNN
文章编号:
1673-629X(2023)05-0035-07
作者:
赵金伟1 2 刘杰东12 邱万力12 黑新宏12*
1. 西安理工大学 计算机科学与工程学院,陕西 西安 710048;
2. 网络计算与安全技术陕西省重点实验室,陕西 西安 710048
Author(s):
ZHAO Jin-wei1 2 LIU Jie-dong12 QIU Wan-li12 HEI Xin-hong12*
1. School of Computer Science and Engineering,Xi’an University of Technology,Xi’an 710048,China;
2. Shaanxi Key Laboratory of Network Computing and Security Technology,Xi’an 710048,China
关键词:
时间序列水流量缺失值插补张量补全低秩张量截断核范数
Keywords:
time serieswater flowmissing value imputationtensor completionlow-rank tensortruncated nuclear norm
分类号:
TP18;TV737
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 05. 006
摘要:
瞬时水流量数据在采集、整理、存储过程中均存在不同程度的数据缺失问题,不但会造成数据分析上的偏差,还会影响后期决策,尤其是连续水流量缺失问题。 国内外关于水流量数据缺失值插补
的研究方法很多,然而针对相邻时间存在连续缺失值的插补问题还没有完备的解决方案。 因此,基于瞬时水流量数据集的低秩假设,提出一种基于非凸低秩张量补全模型( A Nonconvex Low-Rank Tensor Completion Model-Truncated Nuclear Norm,LRTC-TNN) 的瞬时水流量缺失值插补方法。 通过乘子交替方向法( Alternating Direction Method of Multipliers,ADMM) 求解最优的 LRTC-TNN 模型。 利用通用速率参数自动确定张量模态的截断,运用张量补全的策略对连续缺失值进行预测。 将该方法用于某地水厂管道瞬时水流量数据插值实验中并与其它最新的和传统的方法进
行对比,取得了非常好的效果。
Abstract:
In the process of collection,sorting and storing instantaneous water flow data,there are different degrees of data missing,whichwill not only cause deviation in data analysis, but also affect later decision - making,especially the problem of continuous water flowmissing. In the research on missing value imputation of water flow data at home and abroad, there is no complete solution to theimputation problem of continuous missing values in adjacent time. Therefore,based on the low rank assumption of the instantaneouswater flow data set,we propose a nonconvex low rank tensor completion model-truncated nuclear norm ( LRTC-TNN) to impute themissing values in the instantaneous water flow time series data. The optimal LRTC-TNN model is solved by the alternating directionmethod of multipliers ( ADMM) ,and the truncation of tensor modes is automatically determined by using the general rate parameters.The missing values are predicted by using the tensor completion strategy. The proposed method is applied to the imputation experiment ofinstantaneous water flow data in a water plant and compared with other latest and traditional methods,which is efficient,especially for theimputation of continuous missing values.

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(05):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(05):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(05):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(05):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(05):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(05):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(05):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(05):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(05):60.
[10]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(05):226.

更新日期/Last Update: 2023-05-10