[1]赵嘉雨,段亚茹,何立明.基于 GRU-GCN-RDrop 模型的交通速度预测[J].计算机技术与发展,2023,33(04):120-125.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 018]
 ZHAO Jia-yu,DUAN Ya-ru,HE Li-ming.Traffic Speed Prediction Based on GRU-GCN-RDrop Model[J].,2023,33(04):120-125.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 018]
点击复制

基于 GRU-GCN-RDrop 模型的交通速度预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年04期
页码:
120-125
栏目:
人工智能
出版日期:
2023-04-10

文章信息/Info

Title:
Traffic Speed Prediction Based on GRU-GCN-RDrop Model
文章编号:
1673-629X(2023)04-0120-06
作者:
赵嘉雨段亚茹何立明
长安大学 信息工程学院,陕西 西安 710064
Author(s):
ZHAO Jia-yuDUAN Ya-ruHE Li-ming
School of Information Engineering,Chang’an University,Xi’an 710064,China
关键词:
智慧交通系统交通速度预测图卷积网络门控循环单元正则化 Dropout
Keywords:
smart transportation systemtraffic speed predictiongated recurrent unitgraph convolutional networkregularized dropout /R-Drop
分类号:
TP31;U491. 2
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 04. 018
摘要:
准确并实时地预测交通速度是实现智能交通管控和建设智慧交通系统必不可少的一环,然而现有的预测方法无法准确地挖掘其潜在的时空相关性。 为了进一步挖掘数据的时空特性以及提高预测精度,设计了基于门控循环神经网络(GRU) ,图卷积网络( GCN) 和正则化 Dropout(R-Drop) 结合的 GRU-GCN-RDrop 组合模型。 GCN 用于学习复杂的拓扑结构来捕获空间依赖性,GRU 用于学习交通数据的动态变化来捕获时间依赖性。 GCN 和 GRU 相结合后使用 R-Drop 方法提高模型泛化能力。 以 SZ-taxi 数据集为例进行预测分析,GRU-GCN-RDrop 模型预测了未来在 15 分钟、30 分钟、45 分钟和60 分钟的交通速度,并得出对应的均方根误差、平均绝对误差、精度、判定系数和解释方差。 对比 GCN、GRU 单个模型,GRU-GCN-RDrop 模型有效解决了误差的迅速累积问题。 对比大多数现有基准模型,GRU-GCN-RDrop 模型对于交通速度序列的特征提取及解释能力较为优秀。 对比 T-GCN 模型和 ST-AGTCN 模型,GRU-GCN-RDrop 模型泛化能力更强。由此说明了 GRU-GCN-RDrop 模型预测的交通速度时间序列具有较高的精度和稳定性。
Abstract:
Accurate and real- time prediction of traffic speed is an essential part of intelligent traffic control and construction of smarttransportation system. However, the existing prediction methods cannot mine the potential spatio - temporal correlation in the dataaccurately. In order to further mine the spatio-temporal characteristics of data?
and improve the prediction accuracy,a GRU-GCN-RDropcombined model based on gated recurrent unit (GRU) , graph convolutional network ( GCN) and regularized dropout ( R - Drop) isdesigned. The GCN is used to learn complex topological structures to capture spatial dependence and the gated recurrent unit is used tolearn dynamic changes of traffic data to capture temporal dependence. After the combination of GCN and GRU,
the R-Drop method isused to improve the generalization ability of the model. SZ-taxi data set is taken as an example for prediction and analysis. GRU-GCN-RDrop model predicts the future traffic speed in 15 minutes,
30 minutes,45 minutes and 60 minutes, and obtains the correspondingRMSE,MAE,Accuracy,R2 and Var. Compared with GCN and GRU models,GRU-GCN-RDrop model effectively solves the problemof rapid accumulation of errors. Compared with other benchmark models,GRU-GCN-RDrop model is superior in feature extraction andinterpretation of traffic speed series. Compared with T - GCN model and ST - AGTCN model,
GRU - GCN - RDrop model has strongergeneralization ability. It is showed that the timeseries of traffic speed predicted by GRU-GCN-RDrop model has high accuracy and stability.
更新日期/Last Update: 2023-04-10