[1]何娅蓥,覃仁超,舒 月,等.BRNet:基于特征复用的僵尸网络检测模型[J].计算机技术与发展,2023,33(04):108-113.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 016]
 HE Ya-ying,QIN Ren-chao,SHU Yue,et al.BRNet:Botnet Detection Model Based on Feature Reuse[J].,2023,33(04):108-113.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 016]
点击复制

BRNet:基于特征复用的僵尸网络检测模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年04期
页码:
108-113
栏目:
网络空间安全
出版日期:
2023-04-10

文章信息/Info

Title:
BRNet:Botnet Detection Model Based on Feature Reuse
文章编号:
1673-629X(2023)04-0108-06
作者:
何娅蓥1 覃仁超1 舒 月1 蒋瑞林1 李 丫1 刘国航2
1. 西南科技大学 计算机科学与技术学院,四川 绵阳 621000;
2. 成都信息工程大学 网络空间安全学院,四川 成都 610000
Author(s):
HE Ya-ying1 QIN Ren-chao1 SHU Yue1 JIANG Rui-lin1 LI Ya1 LIU Guo-hang2
1. School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang 621000,China;
2. School of Cyberspace Security,Chengdu University of Information Technology,Chengdu 610000,China
关键词:
僵尸网络深度学习ISCX-2014特征复用二分类
Keywords:
Botnetdeep learningISCX-2014feature reusebinary classification
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 04. 016
摘要:
僵尸网络作为一种新型攻击方式,如今已成为互联网安全领域面临的重大威胁之一。 传统的僵尸网络检测算法在某些特定情境下可以达到很好的检测效果。 然而,这些检测算法仍然存在问题,例如在检测现实世界中的真实流量时,存在特征提取标准不统一、低准确率、低召回率等现象,并且无法有效地检测未知僵尸网络。 传统检测方法在真实世界的海量流量下问题频出,因此提出了 BRNet,整个 BRNet 检测模型分为两部分。 第一部分通过设定的统一标准从数据包的标头中提取原始数据。 第二部分提出了 ReconNet 模型,可以充分利用数据的有限特征进行特征重用,以提高分类性能。 在ISCX-2014 僵尸网络数据集上的实验结果表明,准确率可以达到 99. 29% ,F1 分数达到 99. 02% ,优于目前大多数检测方法,且具有很强的泛化能力。 此外,该模型在 CICIDS2017 和 DARKNET2020 数据集上也取得了不错的效果。
Abstract:
As a new attack method, botnets have become one of the major threats in the field of Internet security. Traditional botnetdetection algorithms can achieve good detection results in some specific situations. However, these detection algorithms still haveproblems. For example, when detecting real traffic in the real world, there are phenomena such as inconsistent feature extractionstandards,low accuracy and low recall,and they cannot effectively detect unknown botnets. Traditional detection methods often haveproblems under the massive traffic in the real world,so we propose BRNet,and the entire BRNet detection model is divided into twoparts. The first part extracts the raw data from the header of the packet through a set uniform standard. The second part proposes theReconNet model,which can make full use of the limited features of the data for feature reuse to improve the classification performance.The experiments on the ISCX-2014 botnet dataset show that the accuracy rate can reach 99. 29% ,and the F1 score can reach 99. 02% ,which is better than that of most current detection methods,with strong generalization ability. In addition,this model can also achievegood results in the CICIDS2017 and DARKNET2020 datasets.

相似文献/References:

[1]刘旭勇.DDoS攻击及主动防御模型研究[J].计算机技术与发展,2008,(07):143.
 LIU Xu-yong.Research on DDoS Attacks and Proactive Defense Model[J].,2008,(04):143.
[2]郭晓军,何磊,赵江波.僵尸网络流量检测与控制追踪技术研究[J].计算机技术与发展,2013,(09):135.
 GUO Xiao-jun,HE Lei,ZHAO Jiang-bo.Research on Botnet Traffic Detection with Control and Tracking[J].,2013,(04):135.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(04):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[5]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(04):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[6]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(04):19.
[7]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(04):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[8]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(04):1.
[9]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(04):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[10]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(04):1.

更新日期/Last Update: 2023-04-10