[1]朱万鹏,雷秀娟.使用胸片检测新型冠状肺炎的深度集成网络[J].计算机技术与发展,2023,33(02):153-160.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 023]
 ZHU Wan-peng,LEI Xiu-juan.Deep Integrated Network for Detection of COVID-19 Using Chest Radiographs[J].,2023,33(02):153-160.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 023]
点击复制

使用胸片检测新型冠状肺炎的深度集成网络()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年02期
页码:
153-160
栏目:
人工智能
出版日期:
2023-02-10

文章信息/Info

Title:
Deep Integrated Network for Detection of COVID-19 Using Chest Radiographs
文章编号:
1673-629X(2023)02-0153-08
作者:
朱万鹏雷秀娟
陕西师范大学 计算机科学学院,陕西 西安 710119
Author(s):
ZHU Wan-pengLEI Xiu-juan
School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
关键词:
深度学习集成网络新型冠状肺炎深度可分离卷积人工智能
Keywords:
deep learningintegrated networkCOVID-19depth separable convolutionartificial intelligence
分类号:
TP751
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 02. 023
摘要:
随着新型冠状病毒的爆发,该病毒引起的疫情已成为全球医疗体系最大的威胁之一。 由于目前新型冠状肺炎的强传染性,导致感染人群较多,同时肺炎也成为了影响新型冠状病毒检测的主要因素之一,因而快速诊断检测已经成为主要的挑战。 胸部 X 光检测是一种安全、灵活、速度快和有利的检测方式。 该文提出了一种融合深度可分离网络、卷积自编码器和 VGG16 的深度集成网络,构建了一个强有力的分类模型,用于对新型冠状肺炎的检测与分类。 使用 Kaggle 存储库的 COVID-19 放射学标准数据集中的胸部 X 光图像进行验证。 实验结果表明,该模型对于 COVID-19、肺炎和正常的分类准确率为 96. 15% ,灵敏度为 98. 92% ,F1 评分为 94. 92% 。 最后,将该模型与现有的模型进行了实验性能对比,同时结合了基于梯度的鉴别定位来区分不同类型肺炎的 X 光图像的异常区域。 实验结果表明,提出的模型优于现有的模型,具有较好的鲁棒性,可以作为检测新型冠状肺炎的辅助工具。
Abstract:
With the outbreak of New Coronavirus,the epidemic caused by the virus has become one of the biggest threats to the globalmedical system. Due to the strong contagion of the new type of coronary pneumonia, a large number of people are infected, andpneumonia has become one of the main factors that affect the detection of New Coronavirus. Therefore,rapid diagnosis and detection hasbecome a major challenge. Chest X-ray detection is a safe,flexible,fast and favorable detection method. We propose a deep integrationnetwork integrating deep separable network,convolutional self-encoder and VGG16,and construct a powerful classification model for thedetection and classification of new coronary pneumonia. We use chest X-ray images from the COVID-19 radiology standard dataset of the Kaggle repository for validation. The experiment shows that the classification accuracy of COVID - 19, pneumonia and normal is 96.15% ,the sensitivity is  98. 92% ,and the F1 score is 94. 92% . Finally,the experimental performance of the model is compared withthe existing models,and the gradient based differential localization is combined to distinguish the abnormal areas of X - ray images ofdifferent types of pneumonia. The experimental results show that the proposed model is superior to the existing models with goodrobustness,which can be used as an auxiliary tool for the detection of new coronary pneumonia.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(02):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(02):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(02):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(02):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(02):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(02):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(02):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(02):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(02):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(02):7.

更新日期/Last Update: 2023-02-10