[1]戴 威,陆小锋,钟宝燕,等.一种基于视觉分析的指针式仪表智能抄读方法[J].计算机技术与发展,2023,33(01):200-205.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 030]
 DAI Wei,LU Xiao-feng,ZHONG Bao-yan,et al.An Intelligent Reading Method of Pointer Instrument Based on Visual Analysis[J].,2023,33(01):200-205.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 030]
点击复制

一种基于视觉分析的指针式仪表智能抄读方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年01期
页码:
200-205
栏目:
新型计算应用系统
出版日期:
2023-01-10

文章信息/Info

Title:
An Intelligent Reading Method of Pointer Instrument Based on Visual Analysis
文章编号:
1673-629X(2023)01-0200-06
作者:
戴 威1 陆小锋1 钟宝燕2 赵梓辰1 刘学锋1
1. 上海大学 通信与信息工程学院,上海 200444;
2. 上海大学 计算机工程与科学学院,上海 200444
Author(s):
DAI Wei1 LU Xiao-feng1 ZHONG Bao-yan2 ZHAO Zi-chen1 LIU Xue-feng1
1. School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China;
2. School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China
关键词:
指针式仪表抄读YOLOv3深度学习畸变矫正霍夫变换距离法
Keywords:
reading of pointer instrumentYOLOv3deep learningdistortion correctionHough transformdistance method
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 01. 030
摘要:
在电气室设备指针式仪表抄读中,人工抄读易出现漏检、误检和检测不规范以及其他安全问题,故研究高精度的指针式仪表抄读方法来替代传统抄读方法具有重要意义。 针对人工抄读和现有指针式仪表检测识别算法出现的诸如误差大、检测流程繁琐等各种问题,设计了一种基于视觉分析的指针式仪表智能抄读方法。 该方法通过 YOLOv3 的特征提取网络对仪表图像进行表盘提取和刻度数字关键点检测,由于提取后的图像可能是通过包含仰视、平视和俯视三种采集姿态在内的不同环境条件拍摄得到的,所以图像会出现一定程度的畸变。 为了减少识别误差,还需要进行基于透视变换的倾斜畸变矫正处理,再通过基于霍夫变换概率直线检测和极坐标变换的距离法进行示数判读。 多次实验结果表明,该方法在指针式仪表识别的平均准确度达到 97. 48% ,帧速率达到 4 fps,并且该方法仍然具有良好的鲁棒性,能够满足实际工程需求。
Abstract:
In the reading of pointer instrument in electrical room, manual reading is prone to missed detection, false detection, non -standard detection and other safety problems. Therefore,it is of great significance to study the high-precision pointer instrument readingmethod to replace the traditional reading method. Aiming at the problems of manual reading and existing pointer instrument detection andrecognition algorithms,such as large error and cumbersome detection process,an intelligent reading method of pointer instrument based onvisual analysis is designed. The dial of the instrument image is extracted and the key points of the scale number are detected through thefeature extraction network of YOLOv3. Since the extracted image may be taken under different environmental conditions including threeacquisition postures of up view, head up view and top view, the image will be distorted to a certain extent. In order to reduce therecognition error,tilt correction processing based on perspective transformation is also required. The distance method based on Houghtransform probability line detection and polar coordinate transformation is used for numerical interpretation. The experimental resultsshow that the proposed method in the pointer instrument identification reaches 97. 48% and the frame rate reaches 4 fps. Moreover,it stillhas strong robustness and can meet the actual engineering requirements.

相似文献/References:

[1]李 轩,李 静,王海燕.密集交通场景的目标检测算法研究[J].计算机技术与发展,2020,30(07):46.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 011]
 LI Xuan,LI Jing,WANG Hai-yan.Research on Object Detection Algorithm in Dense Traffic Scenes[J].,2020,30(01):46.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 011]
[2]余 进,史燕中,王春华,等.一种轻量化目标检测算法研究[J].计算机技术与发展,2020,30(11):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
 YU Jin,SHI Yan-zhong,WANG Chun-hua,et al.Research of a Lightweight Object Detection Algorithm[J].,2020,30(01):42.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 008]
[3]杨学杰,李思毛,李建业,等.面向巡检机器人的电力设备状态检测算法研究[J].计算机技术与发展,2021,31(03):201.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 035]
 YANG Xue-jie,LI Si-mao,LI Jian-ye,et al.Research on Algorithm for Equipment Condition Monitoring Based on Inspection Robot[J].,2021,31(01):201.[doi:10. 3969 / j. issn. 1673-629X. 2021. 03. 035]
[4]谭芳喜,肖世德,周亮君,等.基于改进 YOLOv3 算法在道路目标检测中的应用[J].计算机技术与发展,2021,31(08):118.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 020]
 TAN Fang-xi,XIAO Shi-de,ZHOU Liang-jun,et al.Application in Road Target Detection Based on ImprovedYOLOV3 Algorithm[J].,2021,31(01):118.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 020]
[5]许 伟,熊卫华.一种改进的轻量级垃圾目标检测算法[J].计算机技术与发展,2022,32(02):63.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 010]
 XU Wei,XIONG Wei-hua.An Improved Lightweight Garbage Target Detection Algorithm[J].,2022,32(01):63.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 010]
[6]张 剑,王等准,莫光健,等.基于改进 YOLOv3 的高铁异物入侵检测算法[J].计算机技术与发展,2022,32(02):69.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 011]
 ZHANG Jian,WANG Deng-zhun,MO Guang-jian,et al.High-speed Rail Foreign Body Intrusion Detection Algorithm Based on Improved YOLOv3[J].,2022,32(01):69.[doi:10. 3969 / j. issn. 1673-629X. 2022. 02. 011]
[7]吴春香,吴 恋.面向视频的人员入侵检测方法研究及应用[J].计算机技术与发展,2022,32(04):116.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 020]
 WU Chun-xiang,WU Lian.Research and Application of Video Oriented Personnel Intrusion Detection Method[J].,2022,32(01):116.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 020]
[8]胡立华,王敏敏,刘爱琴,等.基于影响空间与 YOLOv3 的古建筑检测方法[J].计算机技术与发展,2022,32(12):185.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 028]
 HU Li-hua,WANG Min-min,LIU Ai-qin,et al.An Ancient Architectural Detection Method Combining Influence Space with YOLOv3 Network[J].,2022,32(01):185.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 028]

更新日期/Last Update: 2023-01-10