[1]张聪聪,都云程,张仰森.事件抽取研究综述[J].计算机技术与发展,2023,33(01):7-13.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 002]
 ZHANG Cong-cong,DU Yun-cheng,ZHANG Yang-sen.A Survey of Research on Event Extraction[J].,2023,33(01):7-13.[doi:10. 3969 / j. issn. 1673-629X. 2023. 01. 002]
点击复制

事件抽取研究综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年01期
页码:
7-13
栏目:
综述
出版日期:
2023-01-10

文章信息/Info

Title:
A Survey of Research on Event Extraction
文章编号:
1673-629X(2023)01-0007-07
作者:
张聪聪1 都云程1 张仰森12
1. 北京信息科技大学 计算机学院,北京 100101;
2. 北京信息科技大学 智能信息处理研究所,北京 100101
Author(s):
ZHANG Cong-cong1 DU Yun-cheng1 ZHANG Yang-sen12
1. School of Computer,Beijing Information Science and Technology University,Beijing 100101,China;
2. Institute of Intelligent Information Processing,Beijing Information Science and Technology University,Beijing 100101,China
关键词:
事件抽取机器学习深度学习模式匹配事理图谱
Keywords:
event extractionmachine learningdeep learningpattern matchingeventic graph
分类号:
TP309
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 01. 002
摘要:
事件抽取是构建事理图谱的重要环节。 近年来,由于深度学习的不断发展,对事件抽取的研究产生了重要的影响,利用深度学习技术进行事件抽取已然成为当前主流的事件抽取方法。 该文对当前的事件抽取方法进行归纳总结,囊括了融合深度学习方法之后的最新研究成果,以期为该领域的深入研究提供参考。 首先,简要叙述事件抽取的主要任务和效果评测指标。 接着,对现有的两种事件抽取方法,即基于模板匹配的方法、基于机器学习的方法( 基于浅层机器学习和基于深度学习) ,进行了详细介绍。 最后,总结事件抽取现阶段的挑战以及未来的发展趋势。 研究表明:随着深度学习的蓬勃发展,事件抽取存在的技术难题不断得到解决,将深度学习技术应用到事件抽取任务以提升抽取性能已是大势所趋。
Abstract:
Event extraction is an important part of building an event graph. In recent years,due to the continuous development of deeplearning,the research on event extraction has had an important impact. Event extraction using deep learning technology has become thecurrent mainstream event extraction method. We summarize the current event extraction methods,including the  latest research results afterintegrating deep learning methods,in order to provide a reference for in-depth research in this field. Firstly,we briefly describe the maintasks and effect evaluation indicators of event extraction. Then,the two existing event extraction methods are introduced in detail,namelythe method based on template matching and the method based on machine learning ( based on shallow machine learning and based ondeep learning) . Finally,we summarize the current challenges of event extraction and future development trends. Research shows thatwith the vigorous development of deep learning, the technical problems of event extraction are constantly being solved, and it is anirresistible trend to apply deep learning technology to event extraction tasks to improve extraction performance.

相似文献/References:

[1]陈全 赵文辉 李洁 江雨燕.选择性集成学习算法的研究[J].计算机技术与发展,2010,(02):87.
 CHEN Quan,ZHAO Wen-hui,LI Jie,et al.Research of Selective Ensemble Learning Algorithm[J].,2010,(01):87.
[2]黄秀丽 王蔚.SVM在非平衡数据集中的应用[J].计算机技术与发展,2009,(06):190.
 HUANG Xiu-li,WANG Wei.Application of SVM in Imbalances Dataset[J].,2009,(01):190.
[3]鲁晓南 接标.一种基于个性化邮件特征的反垃圾邮件系统[J].计算机技术与发展,2009,(08):155.
 LU Xiao-nan,JIE Biao.An Individual Anti- Spam Technology[J].,2009,(01):155.
[4]张苗 张德贤.多类支持向量机文本分类方法[J].计算机技术与发展,2008,(03):139.
 ZHANG Miao,ZHANG De-xian.Research on Text Categorization Based on. M- SVMs[J].,2008,(01):139.
[5]汤萍萍 王红兵.基于强化学习的Web服务组合[J].计算机技术与发展,2008,(03):142.
 TANG Ping-ping,WANG Hong-bing.Web Service Composition Based on Reinforcement -Learning[J].,2008,(01):142.
[6]杨雪洁 赵姝 张燕平.基于商空间理论的冬小麦产量预测和分析[J].计算机技术与发展,2008,(03):249.
 YANG Xue-jie,ZHAO Shu,ZHANG Yan-ping.Analysis on Winter Wheat Yield Based on Quotient Space Theory[J].,2008,(01):249.
[7]汤伟 程家兴 纪霞.一种基于概率推理的邮件过滤系统的研究与设计[J].计算机技术与发展,2008,(08):76.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Probability Inference[J].,2008,(01):76.
[8]孙海虹 丁华福.基于模糊粗糙集的Web文本分类[J].计算机技术与发展,2010,(07):21.
 SUN Hai-hong,DING Hua-fu.Web Document Classification Based on Fuzzy-Rough Set[J].,2010,(01):21.
[9]汤伟 程家兴 纪霞.统计学理论在邮件分类中的应用研究[J].计算机技术与发展,2008,(12):231.
 TANG Wei,CHENG Jia-xing,JI Xia.Research and Design of a Spam Filtering System Based on Statistical Learning Theory[J].,2008,(01):231.
[10]张高胤 谭成翔 汪海航.基于K-近邻算法的网页自动分类系统的研究及实现[J].计算机技术与发展,2007,(01):21.
 ZHANG Gao-yin,TAN Cheng-xiang,WANG Hai-hang.Design and Implementation of Web Page Automation Classification System Based on K- Nearest Neighbor Algorithm[J].,2007,(01):21.
[11]项 威,王 邦.中文事件抽取研究综述[J].计算机技术与发展,2020,30(02):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
 XIANG Wei,WANG Bang.Survey of Chinese Event Extraction Research[J].,2020,30(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
[12]高 兵,皇甫楠,邹启杰,等.基于全局语义匹配的篇章级事件抽取方法[J].计算机技术与发展,2023,33(07):154.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 023]
 GAO Bing,HUANGFU Nan,et al.Document-level Event Extraction Method Based on Global Semantic Matching[J].,2023,33(01):154.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 023]

更新日期/Last Update: 2023-01-10