[1]王永刚,陈雪华,刘 喆,等.基于云检测的遥感图像精细化筛选方法研究[J].计算机技术与发展,2022,32(S2):147-151.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 026]
 WANG Yong-gang,CHEN Xue-hua,LIU Zhe,et al.Research on a Fine Screening Method for Remote Sensing Images Based on Cloud Detection[J].,2022,32(S2):147-151.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 026]
点击复制

基于云检测的遥感图像精细化筛选方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年S2期
页码:
147-151
栏目:
应用前沿与综合
出版日期:
2022-12-11

文章信息/Info

Title:
Research on a Fine Screening Method for Remote Sensing Images Based on Cloud Detection
文章编号:
1673-629X(2022)S2-0147-05
作者:
王永刚陈雪华刘 喆周 箭
北京市遥感信息研究所,北京 100011
Author(s):
WANG Yong-gangCHEN Xue-huaLIU ZheZHOU Jian
Beijing Institute of Remote Sensing Information,Beijing 100011,China
关键词:
云检测图像筛选质量判定数据服务感兴趣区域
Keywords:
cloud detectionimage screeningquality evaluationdata serviceregion of interest
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2022. S2. 026
摘要:
在光学遥感数据服务中,为满足用户对高质量无云数据的快速获取需求,需要对自动云判及基于云判结果的数据筛选服务方式进行研究。 针对光学卫星图像,通过设计基于深度学习的云检测流程,实现对浏览图的自动云检测;并在云检测结果基础上实现了针对整景和针对感兴趣区域的两种云判质量判定和筛选服务方式。 经实验,文中算法能够达到较高的云检测精度,云检测成果可用于后期的遥感数据价值分析,为数据的有效筛选和有效存储提供支撑服务。 尤其是云区矢量的提取和基于感兴趣区域的精细化数据筛选方法的应用,为现有数据中提供了更加丰富的信息,也使得数据分析和筛选的粒度更加细化。
Abstract:
In the area of optical remote sensing data service, users often want to get the images without cloud as soon as possible, soresearch on automatic cloud detection and image screening method based on cloud-detection result is meaningful. This paper introduces acloud detection method based on deep learning for optical remote sensing images which are downsampled. Then utilizing the cloud -detection result,this paper proposes two modes of image quality evaluation and data service for whole image and region of interest( ROI) . Experiment shows that this method works well,and the cloud-detection result can be used in remote sensing data value analysis,image screening and data storage. Especially the fine screening images method based on application of boundary extraction of cloudregion can be used to provide more information and to improve data analysis and data service skills.
更新日期/Last Update: 2022-10-10