[1]盖 璇.基于云计算和分布式技术的流量分析模型[J].计算机技术与发展,2022,32(S2):114-119.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 020]
 GAI Xuan.Traffic Analysis Model Based on Cloud Computing and Distributed Technology[J].,2022,32(S2):114-119.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 020]
点击复制

基于云计算和分布式技术的流量分析模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年S2期
页码:
114-119
栏目:
网络有安全
出版日期:
2022-12-11

文章信息/Info

Title:
Traffic Analysis Model Based on Cloud Computing and Distributed Technology
文章编号:
1673-629X(2022)S2-0114-06
作者:
盖 璇
东北石油大学,黑龙江 大庆 163318
Author(s):
GAI Xuan
Northeast Petroleum University,Daqing 163318,China
关键词:
云计算分布式处理技术网络流量海量网络数据流量控制
Keywords:
cloud computingdistributed processing technologynetwork flowmassive network dataflow schedule
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2022. S2. 020
摘要:
传统海量网络流量分析模型采用串行分析方式,在运行中存在时间开销大的问题,为此提出基于云计算和分布式处理技术的海量网络流量分析模型。 首先结合云计算与分布式处理技术的运行方式,搭建模型结构,在该结构下实时采集网络中的流量数据,并作为模型的输入值。 通过对初始数据的存储、分类以及异常检测等处理,分别得出海量网络流量的分析结果,综合多个方面的分析结果得出模型的输出项。 实验对比结果表明,通过云计算和分布式处理技术的应用有效地降低少量用户在线环境和大量用户在线环境时间开销,在分析速度上具有明显优势。
Abstract:
The traditional massive network traffic analysis model adopts the serial analysis method,which has the problem of large timecost in operation. Therefore,a? ? ?massive network traffic analysis model based on cloud computing and distributed processing technology isproposed. Firstly,combining the operation mode of? ?cloud computing and distributed processing technology,a model structure is built,under which the traffic data in the network is collected in real time and used? ? ? ? ?as the input value of the model. Through the initial datastorage,classification and exception detection, the analysis results of massive network traffic are obtained respectively, and the outputitems of the model are obtained by synthesizing the analysis results of many aspects. The experimental results show that the application ofcloud computing and distributed processing technology can effectively reduce the time cost of a small number of users’ online environmentand a large number of users’ online environment,and has obvious advantages in the analysis speed.

相似文献/References:

[1]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(S2):143.
[2]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(S2):99.
[3]孙放 陈云芳 林杭锋.适用于富客户端的云计算模型[J].计算机技术与发展,2010,(08):96.
 SUN Fang,CHEN Yun-fang,LIN Hang-feng.Cloud Computing Model Applicable to Rich Client Applications[J].,2010,(S2):96.
[4]郭苑 张顺颐 孙雁飞.物联网关键技术及有待解决的问题研究[J].计算机技术与发展,2010,(11):180.
 GUO Yuan,ZHANG Shun-yi,SUN Yan-fei.Research of Key Technologies and Unresolved Questions of Internet of Things[J].,2010,(S2):180.
[5]李玲娟 张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,(02):43.
 LI Ling-juan,ZHANG Min.Research on Algorithms of Mining Association Rule under Cloud Computing Environment[J].,2011,(S2):43.
[6]王德政 申山宏 周宁宁.云计算环境下的数据存储[J].计算机技术与发展,2011,(04):81.
 WANG De-zheng,SHEN Shan-hong,ZHOU Ning-ning.Data Storage in Cloud Computing Environment[J].,2011,(S2):81.
[7]宋丽华 姜家轩 张建成 田长录 马文征.黄河三角洲云计算平台关键技术的研究[J].计算机技术与发展,2011,(06):40.
 SONG Li-hua,JIANG Jia-xuan,ZHANG Jian-cheng,et al.Research of Key Technologies of Cloud Computing of Yellow River Delta[J].,2011,(S2):40.
[8]田宏伟 解福 倪俊敏.云计算环境下基于粒子群算法的资源分配策略[J].计算机技术与发展,2011,(12):22.
 TIAN Hong-wei,XIE Fu,NI Jun-min.Resource Allocation Algorithm Based on Particle Swarm Algorithm in Cloud Computing Environment[J].,2011,(S2):22.
[9]张慧 邢培振.云计算环境下信息安全分析[J].计算机技术与发展,2011,(12):164.
 ZHANG Hui,XING Pei-zhen.Information Security Analysis in Cloud Computing Environment[J].,2011,(S2):164.
[10]张建成[] 宋丽华[] 鹿全礼[] 郭锐[] 刘永泉[].云计算方案分析研究[J].计算机技术与发展,2012,(01):165.
 ZHANG Jian-cheng,SONG Li-hua,LU Quan-li,et al.Study and Analysis of Cloud Computing Procedure[J].,2012,(S2):165.

更新日期/Last Update: 2022-10-10