[1]王 婷*,何松泽,杨 川.知识图谱相关方法在脑科学领域的应用综述[J].计算机技术与发展,2022,32(11):1-7.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 001]
 WANG Ting*,HE Song-ze,YANG Chuan.An Application Review of Knowledge Graph Related Methods in Field of Human Brain Science[J].,2022,32(11):1-7.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 001]
点击复制

知识图谱相关方法在脑科学领域的应用综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年11期
页码:
1-7
栏目:
综述
出版日期:
2022-11-10

文章信息/Info

Title:
An Application Review of Knowledge Graph Related Methods in Field of Human Brain Science
文章编号:
1673-629X(2022)11-0001-07
作者:
王 婷* 何松泽杨 川
成都信息工程大学 计算机学院,四川 成都 610225
Author(s):
WANG Ting* HE Song-zeYANG Chuan
School of Computer Science,Chengdu University of Information Technology,Chengdu 610225,China
关键词:
知识图谱自然语言处理脑科学机器学习深度学习
Keywords:
knowledge graphnatural language processingbrain sciencemachine learningdeep learning
分类号:
TP391. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 11. 001
摘要:
随着脑科学相关问题的研究逐年增长,与脑科学领域的相关文本信息越来越多。 由此,如何利用知识图谱技术实现脑科学领域知识的集成、分析、挖掘与再利用受到了研究者们的关注。 为了解目前知识图谱的方法在脑科学领域的应用状况,通过调研现有相关文献,有如下总结:在方法应用上,知识图谱的相关方法在脑科学领域的应用主要集中在实体以及实体关系抽取上,很少被用于后续的数据挖掘与推理;在平台的构建上,存在着平台缺乏良好维护的问题;而在认知功能脑知识图谱上,大多都是与脑灰质相关,未能很好地联系到脑白质,忽略了脑白质所处的作用。 此外,该文简述了现有利用知识图谱相关技术所构建的应用与工具,并对比分析了它们的优缺点。 综合以上调研,针对脑科学领域的知识图谱应用与发展,提出对未来的展望。
Abstract:
As the research on brain science - related issues grows year by year, more and more relevant literature in the field of brainscience. Therefore,how to use knowledge graph technology to realize the integration,analysis,mining and reuse of literature knowledgein the brain science field has attracted the attention of researchers. In order to understand the application status of? ?the current knowledgegraph method in the field of brain science,the following summary is made by investigating the existing relevant literature. First of all,from an application perspective,? ?the application of knowledge graph in the field of brain science mainly focuses on entity and entity relationship extraction,and is rarely used for subsequent data mining and reasoning at? ? ?the current stage. In the construction of the platform,there is a lack of good maintenance of the platform. On the cognitive function brain knowledge map,most of them are related to the graymatter of the brain,and fail to take the white matter into consideration which ignores the role of the white matter in human cognition.Secondly,we briefly describe the current applications and tools constructed by using knowledge graph-related technologies,and analyzeand compare their advantages and disadvantages. Finally,for the construction and development of knowledge graphs in the field of brainscience,we propose a prospect for the future.

相似文献/References:

[1]陈国华 赵克 李亚涛 易帅.自然语言处理系统中的事件类名词的耦合处理[J].计算机技术与发展,2008,(06):60.
 CHEN Guo-hua,ZHAO Ke,LI Ya-tao,et al.Coupling Processing of Event Noun in NLP Systems[J].,2008,(11):60.
[2]程节华.基于FAQ的智能答疑系统中分词模块的设计[J].计算机技术与发展,2008,(07):181.
 CHENG Jie-hua.Design of Words Module in Intelligent Q/A System Based on FAQ[J].,2008,(11):181.
[3]杨欢 许威 赵克 陈余.动词属性在自然语言处理当中的研究与应用[J].计算机技术与发展,2008,(07):233.
 YANG Huan,XU Wei,ZHAO Ke,et al.Research and Application of Verb Attributes in Natural Language Processing[J].,2008,(11):233.
[4]孙超 张仰森.面向综合语言知识库的知识融合与获取研究[J].计算机技术与发展,2010,(08):25.
 SUN Chao,ZHANG Yang-sen.Research of Knowledge Integration and Obtaining Oriented Comprehensive Language Knowledge System[J].,2010,(11):25.
[5]党建 亿珍珍 赵克 殷鸿.数学领域集体词结构形式化处理研究[J].计算机技术与发展,2007,(05):121.
 DANG Jian,YI Zhen-zhen,ZHAO Ke,et al.Research of Formalization Processing for Collective Structures in Mathematics Domain[J].,2007,(11):121.
[6]江有福 郑庆华.自然语言网络答疑系统中倒排索引技术的研究[J].计算机技术与发展,2006,(02):126.
 JIANG You-fu,ZHENG Qing-hua.Research of Inverted Index in NLWAS[J].,2006,(11):126.
[7]刘亚清 张瑾 于纯妍.基于义原同现频率的汉语词义排歧系统[J].计算机技术与发展,2006,(05):184.
 LIU Ya-qing,ZHANG Jin,YU Chun-yan.A Chinese Word Sense Disambiguation System Based on Primitive CO- Occurrence Data[J].,2006,(11):184.
[8]刘政怡 李炜 吴建国.基于IMM—IME的汉字键盘输入法编程技术研究[J].计算机技术与发展,2006,(12):43.
 LIU Zheng-yi,LI Wei,WU Jian-guo.Research of Programming Technology of Chinese Input Method Based on IMM- IME[J].,2006,(11):43.
[9]赵鹏 何留进 孙凯 方薇[].基于情感计算的网络中文信息分析技术[J].计算机技术与发展,2010,(11):146.
 ZHAO Peng,HE Liu-jin,SUN Kai,et al.Analyzing Technologies of Internet Chinese Information Based on Affective Computing[J].,2010,(11):146.
[10]徐远方 李成城.基于SVM和词间特征的新词识别研究[J].计算机技术与发展,2012,(05):134.
 XU Yuan-fang,LI Cheng-cheng.Research on New Word Identification Based on SVM and Word Characteristics[J].,2012,(11):134.
[11]戈其平,钟艳如.基于数学教学的知识图谱构建[J].计算机技术与发展,2019,29(03):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
 GE Qi-ping,ZHONG Yan-ru.Construction of Knowledge Atlas Based on Mathematics Teaching[J].,2019,29(11):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
[12]项 威,王 邦.中文事件抽取研究综述[J].计算机技术与发展,2020,30(02):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
 XIANG Wei,WANG Bang.Survey of Chinese Event Extraction Research[J].,2020,30(11):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
[13]卢 琪,谢艺菲,谢 钧,等.知识图谱在智能问答中的应用研究[J].计算机技术与发展,2021,31(07):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
 LU Qi,XIE Yi-fei,XIE Jun,et al.Research on Application of Knowledge Graphs in Intelligent Question Answering[J].,2021,31(11):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
[14]杨 泽,顾 磊.一种中国古典文学文本知识图谱构建方法[J].计算机技术与发展,2021,31(07):28.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 005]
 YANG Ze,GU Lei.A Method for Constructing Knowledge Graph of Chinese Classical Literature[J].,2021,31(11):28.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 005]
[15]杨 阳,盛胜利,奚雪峰.基于知识图谱的多轮对话技术研究综述[J].计算机技术与发展,2023,33(04):27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 004]
 YANG Yang,SHENG Sheng-li,XI Xue-feng.Recovery of Multi-turn Dialogue Based on Knowledge Graph[J].,2023,33(11):27.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 004]
[16]李欣宇,赵 震*.命名实体消歧研究综述[J].计算机技术与发展,2024,34(02):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 001]
 LI Xin-yu,ZHAO Zhen*.Review of Named Entity Disambiguation Studies[J].,2024,34(11):1.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 001]

更新日期/Last Update: 2022-11-10