[1]臧玑珣,徐鑫航.基于网络嵌入的农产品销售推荐系统[J].计算机技术与发展,2022,32(10):209-214.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 034]
 ZANG Ji-xun,XU Xin-hang.Recommendation System for Agricultural Products MarketingChannels Based on Network Embedding[J].,2022,32(10):209-214.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 034]
点击复制

基于网络嵌入的农产品销售推荐系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年10期
页码:
209-214
栏目:
新型计算应用系统
出版日期:
2022-10-10

文章信息/Info

Title:
Recommendation System for Agricultural Products MarketingChannels Based on Network Embedding
文章编号:
1673-629X(2022)10-0209-06
作者:
臧玑珣1 徐鑫航2
1. 西安外国语大学 信息技术中心,陕西 西安 710061;
2. 西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
Author(s):
ZANG Ji-xun1 XU Xin-hang2
1. Center of Information Technology,Xi’an International Studies University,Xi’ an 710061,China;
2. School of Computer Science and Technology,Xidian University,Xi’an 710071,China
关键词:
推荐系统词嵌入网络表示学习农产品销售社交网络
Keywords:
recommendation systemword embeddingnetwork representation learningagricultural product salessocial network
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 10. 034
摘要:
建立精准的农产品销售途径对于农产品的生产流通有非常大的指导意义,但农产品由于产地与保质期等因素的限制,导致多数农产品在电商平台上的流通能力较差。 此外,农产品相关的推荐工作主要集中在以买家为目标的商品推荐上,鲜少有以卖家为目标用户,为其预售产品提供销售途径推荐的系统。 提出了一种基于网络表示学习的农产品销售途径推荐方法,它使用基于词嵌入的 AP-GloVe ( Global Word Vector Represen-tation for Agricultural Products) 方法进行农产品销售地与销售商推荐,并基于影响力的图神经网络模型 IAGNN ( Influence-Aware Graph Neural Networks) 进行潜在的买家推荐,实现了农产品销售中对于销售区域、销售商与产品买家的推荐。 相关模型在词的相似性检测、节点分类与链路预测等实验中取得了优于现有模型的效果。
Abstract:
The establishment of precise agricultural products sales channels has great guiding significance for the production and circulation of agricultural products. However,due to the limitations of origin and shelf life of agricultural products,the circulation ability of most agricultural products on e - commerce platforms is poor. In addition,the recommendation work related to agricultural products mainly focuses on the recommendation of products that target buyers. There are few systems that target sellers and provide sales channel recommendations for their pre - sale products. A method for recommending agricultural product sales channels based on network representation learning is proposed. It uses the word embedding - based AP - GloVe method to recommend agricultural product sale slocations and sellers,and recommends potential buyers based on the influence graph neural network model IAGNN,which realizes the recommendation of sales area, sellers and product buyers in agricultural product sales. Related models have achieved better results than existing models in experiments such as word similarity detection,node classification and link prediction.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(10):67.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(10):182.
[3]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(10):4.
[4]高静 应吉康.基于人工免疫系统的推荐系统[J].计算机技术与发展,2007,(05):180.
 GAO Jing,YING Ji-kang.A Recommendation System Based on Artificial Immune System[J].,2007,(10):180.
[5]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(10):70.
[6]华铨平.基于FNN的家纺产品个性化推荐系统的研究[J].计算机技术与发展,2011,(09):183.
 HUA Quan-ping.Research on Personalized Recommendation System of Textile Products Used by Family Based on FNN[J].,2011,(10):183.
[7]马言春 彭志平.基于市场机制的云服务管理研究[J].计算机技术与发展,2012,(03):214.
 MA Yan-chun,PENG Zhi-ping.Research on Cloud Service Management Based on Market Mechanism[J].,2012,(10):214.
[8]刘厚良.网络协同戏剧中个性化戏剧资源推荐系统[J].计算机技术与发展,2012,(08):25.
 LIU Hou-liang.Personalized Drama Resource Recommendation System in Cooperative Play[J].,2012,(10):25.
[9]陆晓敏 崇志宏 陈国庆.基于本体的商品推荐方法[J].计算机技术与发展,2012,(10):10.
 LU Xiao-min,CHONG Zhi-hong,CHEN Guo-qing.Product Recommending Method Based on Ontology[J].,2012,(10):10.
[10]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(10):66.

更新日期/Last Update: 2022-10-10