[1]杨立鹏,廉文彬,季续国,等.12306 在线咨询服务智能应答研究[J].计算机技术与发展,2022,32(07):149-154.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 026]
 YANG Li-peng,LIAN Wen-bin,JI Xu-guo,et al.Research on Intelligent Response of 12306 Online Consulting Service[J].,2022,32(07):149-154.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 026]
点击复制

12306 在线咨询服务智能应答研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年07期
页码:
149-154
栏目:
应用前沿与综合
出版日期:
2022-07-10

文章信息/Info

Title:
Research on Intelligent Response of 12306 Online Consulting Service
文章编号:
1673-629X(2022)07-0149-06
作者:
杨立鹏1廉文彬2季续国3李 雯1陈华龙1
1. 中国铁道科学研究院集团有限公司,北京 100081;
2. 中国国家铁路集团有限公司,北京 100844;
3. 中科知程科技有限公司,北京 100044
Author(s):
YANG Li-peng1 LIAN Wen-bin2 JI Xu-guo3 LI Wen1 CHEN Hua-long1
1. China Academy of Railway Sciences Co. ,Ltd. ,Beijing 100081,China;
2. China State Railway Group Co. ,Ltd. ,Beijing 100844,China;
3. Visionary Intelligence Technology Co. ,Ltd. ,Beijing 100044,China
关键词:
深度学习孪生网络智能客服倒排索引自然语言处理
Keywords:
deep learningSiamase LSTMintelligent customer serviceinverted indexnatural language processing
分类号:
TP39
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 07. 026
摘要:
随着人工智能应用的普及,与生活相关的各种服务都在向着智能化发展,铁路客服作为旅客业务咨询的重要窗口,高效的服务能够带给旅客更优的体验。 为了能够方便旅客咨询出行相关的问题,铁路 12306 开通了在线咨询服务。12306 在线咨询服务的应答能力主要依赖于问题的检索能力,能够高效、准确地检索旅客咨询的问题是提升在线客服服务的关键。 因此该文利用倒排索引技术和 LSTM 孪生网络提出了一种新的检索方法,首先利用倒排索引技术进行文本的预处理,可以极大地提高检索的效率;然后基于 LSTM 孪生网络和注意力机制构建了 AT_LSTM 模型用于计算问题的相似度,并且与基于 HowNet 和基于词向量余弦距离的相似度算法进行了对比。 实验结果表明,该检索优化方法相比 HowNet和 Consine+word2vec 准确率都有较大的提升。 智能应答检索能力的优化,提升了客运的在线咨询服务能力,铁路客运可以更好地服务旅客。
Abstract:
With the popularization of artificial intelligence application,various life-related services are developing towards intelligence. As an important window for passenger business consultation,railway customer service can bring passengers? a better experience. In order to make it easier for passengers to consult on travel - related issues, railway 12306 has launched an online consultation service. The response ability of 12306 online consultation service mainly depends on the retrieval ability of questions. The key to improve online customer service is to be able to retrieve the questions inquired by passengers efficiently and accurately. Therefore,we propose a new retrieval method based on inverted index technology and LSTM Siamase network. Firstly, the inverted index technology is used to preprocess text,which can greatly improve the retrieval efficiency. Then the AT_LSTM model is constructed based on the LSTM Siamase network and attention mechanism to calculate the similarity of the problem, and is compared with the similarity algorithm based on HowNet and word vector cosine distance. Experimental results show that the proposed method has a great improvement in accuracy compared with How Net and Consine + Word2Vec. The optimization of intelligent response retrieval ability enhances the online consultation service ability of passenger transport,and the railway passenger transport can better serve passengers.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(07):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(07):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(07):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(07):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(07):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(07):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(07):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(07):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(07):7.

更新日期/Last Update: 2022-07-10