[1]潘理虎,陈亭亭,闫慧敏,等.基于滑动窗口注意力网络的关系分类模型[J].计算机技术与发展,2022,32(06):21-27.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 004]
 PAN Li-hu,CHEN Ting-ting,YAN Hui-min,et al.Relation Classification Model Based on Sliding Window Attention Network[J].,2022,32(06):21-27.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 004]
点击复制

基于滑动窗口注意力网络的关系分类模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年06期
页码:
21-27
栏目:
人工智能
出版日期:
2022-06-10

文章信息/Info

Title:
Relation Classification Model Based on Sliding Window Attention Network
文章编号:
1673-629X(2022)06-0021-07
作者:
潘理虎陈亭亭闫慧敏赵彭彭张 睿张英俊
1. 太原科技大学 计算机科学与技术学院,山西 太原 030024;
2. 中国科学院 地理科学与资源研究所,北京 100101
Author(s):
PAN Li-hu1 CHEN Ting-ting1 YAN Hui-min2 ZHAO Peng-peng1 ZHANG Rui1 ZHANG Ying-jun1
1. School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;
2. Institute of Geographic Science and Natural Resource Research,Chinese Academy of Sciences,Beijing 100101,China
关键词:
实体关系抽取滑动窗口SBERT注意力机制局部信息全局信息
Keywords:
entity relation extractionsliding windowSBERTattention mechanismlocal informationglobal information
分类号:
TP391. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 06. 004
摘要:
实体关系抽取是构建知识图谱过程中至关重要的一步。 将注意力机制引入卷积神经网络或循环神经网络是目前关系抽取任务中比较主流的解决方法,谷歌最新提出的 BERT 模型在多项自然语言处理任务中都取得了非常好的效果。为了充分融合局部信息和全局信息,并提高处理效率,该文提出了滑动窗口注意力网络模型( Sliding Window AttentionNetwork,SWAN) 。 该模型首先通过预训练的 word2vec 生成词向量,加入位置表示并使用 TransE 模型对实体进行表征以充分突出实体信息,再采用基于 BERT 的 SBERT 模型对句子进行表征,在此基础上采用多种滑动窗口注意力机制捕获局部信息,然后在聚集层对抽取到的局部信息进行聚合,最后利用 softmax 函数来实现实体关系的分类。 实验结果表明,提出的 SWAN 模型在 SemEval2010 Task 8 数据集上取得了较高的准确率,优于对比的现有关系抽取模型,同时模型训练效率也得到极大提升。
Abstract:
Relationship extraction is a crucial step in the process of constructing a knowledge graph. Introducing the attention mechanism into convolutional neural networks? ? or recurrent neural networks is the current mainstream solution for relation extraction tasks. The BERT model recently proposed by Google is efficient in a number of natural language processing tasks. In order to fully integrate local information and global information and improve processing efficiency,we propose a sliding window attention network model ( SWAN) .It firstly generates word vectors through pre-trained word2vec,adding location representation and using TransE to characterize the entity to fully highlight the entity information, and then uses the BERT - based SBERT model to characterize the sentence. On this basis,avariety of sliding window attention mechanisms are used to capture the local information, and then the extracted local information is aggregated in the aggregation layer,and finally the softmax function is used to classify entity relationships. The experimental results show that the proposed SWAN model achieves a higher accuracy rate on the SemEval2010 Task 8 data set,which is better than the existing relation extraction model for comparison,and the model training efficiency is also greatly improved.

相似文献/References:

[1]黄益贵 王汝传.P2P-VoD系统中自适应大小的滑动窗口模型研究[J].计算机技术与发展,2010,(05):21.
 HUANG Yi-gui,WANG Ru-chuan.Research of Self-Adjust Size of Sliding Window Model in P2P-Based VoD System[J].,2010,(06):21.
[2]司开君 毛宇光.一种新的基于数据流的数据模型[J].计算机技术与发展,2007,(01):1.
 SI Kai-jun,MAO Yu-guang.A New Data Model Based on Data Stream[J].,2007,(06):1.
[3]高志森 张铮 李俊.入侵检测中贝叶斯分类器改进的研究[J].计算机技术与发展,2006,(11):154.
 GAO Zhi-sen,ZHANG Zheng,LI Jun.Improved Bayesian Classifier of Intrusion Detection[J].,2006,(06):154.
[4]张敏 李玲娟 王汝传.基于BitTorrent的P2P VOD系统研究[J].计算机技术与发展,2010,(10):111.
 ZHANG Min,LI Ling-juan,WANG Ru-chuan.Research on BitTorrent-Based P2P VOD System[J].,2010,(06):111.
[5]蔡妮明 王翰虎 陈梅.一种基于滑动窗口的流数据聚类算法[J].计算机技术与发展,2011,(01):23.
 CAI Ni-ming,WANG Han-hu,CHEN Mei.A New Streaming Data Cluster Algorithm Based on Sliding Window[J].,2011,(06):23.
[6]冯静 余建桥 李雪娇.寻找XLCA的XML数据流TOP-K关键字查询算法[J].计算机技术与发展,2011,(09):95.
 FENG Jing,YU Jian-qiao,LI Xue-jiao.TOP-K Keyword Query for Exclusive LCAs on XML Data Streams[J].,2011,(06):95.
[7]肖裕权 周肆清.基于粒子群优化算法的数据流聚类算法[J].计算机技术与发展,2011,(10):43.
 XIAO Yu-quan,ZHOU Si-qing.Clustering Evolving Data Streams Based on Particle Swarm Optimization[J].,2011,(06):43.
[8]赵冉阳,张心言,吴志红. 基于复式滑动窗口的车辆排队长度检测方法[J].计算机技术与发展,2015,25(11):17.
 ZHAO Ran-yang,ZHANG Xin-yan,WU Zhi-hong. Measurement Method of Vehicle Queue Length Based on Duplex Sliding Window[J].,2015,25(06):17.
[9]吴家皋,刘敏,韦光,等. 一种改进的滑动窗口轨迹数据压缩算法[J].计算机技术与发展,2015,25(12):47.
 WU Jia-gao,LIU Min,WEI Guang,et al. An Improved Trajectory Data Compression Algorithm of Sliding Window[J].,2015,25(06):47.
[10]聂建豪,李士进. 基于图像识别的秸秆焚烧事件检测[J].计算机技术与发展,2017,27(05):69.
 NIE Jian-hao,LI Shi-jin. Detection of Straw Burning Event Based on Image Recognition[J].,2017,27(06):69.

更新日期/Last Update: 2022-06-10