[1]曹灿灿,龚声蓉,周立凡,等.基于 HSV 颜色空间特征的视频烟雾检测[J].计算机技术与发展,2022,32(05):171-175.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 029]
 CAO Can-can,GONG Sheng-rong,ZHOU Li-fan,et al.Video Smoke Detection Based on HSV Color Space Feature[J].,2022,32(05):171-175.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 029]
点击复制

基于 HSV 颜色空间特征的视频烟雾检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年05期
页码:
171-175
栏目:
应用前沿与综合
出版日期:
2022-05-10

文章信息/Info

Title:
Video Smoke Detection Based on HSV Color Space Feature
文章编号:
1673-629X(2022)05-0171-05
作者:
曹灿灿1 龚声蓉2 周立凡2 钟 珊2
1. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318;
2. 常熟理工学院 计算机科学与工程学院,江苏 常熟 215500
Author(s):
CAO Can-can1 GONG Sheng-rong2 ZHOU Li-fan2 ZHONG Shan2
1. School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China;
2. School of Computer Science and Engineering,Changshu Institute of Technology,Changshu 215500,China
关键词:
烟雾检测HSV 颜色空间特征卷积神经网络conv-12烟雾警报
Keywords:
smoke detectionHSV color space featuresconvolutional neural networksconv-12 smoke alert
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 05. 029
摘要:
由于烟雾具有形状不规则、扩散缓慢的特性,导致传统烟雾识别方法对烟雾检测存在一定的缺陷,如烟雾检测准确率低、烟雾警报响应时间长等问题。 为了满足野外空旷场景下烟雾检测的准确性和实时性,提出了基于 HSV( Hue,Saturation,Brightness,色调,饱和,明亮) 颜色空间特征和卷积神经将网络相结合的视频烟雾检测的识别方法。 通过将烟雾图像的 RGB 颜色空间特征映射到 HSV 颜色空间特征后提取烟雾候选区域,提取到的烟雾候选区域经过高斯混合模型进行运动判断,然后将符合运动特征的烟雾候选区域图像送入到训练好的卷积神经网络中进行烟雾识别。 针对传统烟雾检测效率问题,设计了卷积神经网络 conv-12 用于烟雾识别。 实验结果表明,基于 HSV 颜色空间特征和卷积神经网络 conv-12 相结合的视频烟雾识别方法对视频烟雾检测的准确率为 96. 45% ,烟雾检测率为 93. 3% ,烟雾报警平均响应时间为 0. 9s。 相较于其他方法,在烟雾检测准确率、烟雾检测率、烟雾警报响应时间都有一定的提升。
Abstract:
Due to the irregular shape and slow diffusion of smoke,traditional smoke identification methods have some defects in smoke detection,such as low accuracy, long smoke alarm response time and so on. In order to satisfy the accuracy and real time of smoke detection in open field,we propose an identification method of video smoke detection based on combining HSV( Saturation,Brightness,Tone) color space features and convolution neural networks. The smoke candidate region is extracted by mapping the RGB color space features of the smoke images to the? HSV color space features,then the smoke candidate region image is fed into the trained convolution neural network for smoke recognition. For? the traditional smoke detection efficiency,a convolutional neural network conv-12 is designed for smoke recognition. Experimental results show that the accuracy of video smoke recognition method based on HSV color space features and convolution neural network conv-12 is 96. 45% ,? the smoke detection rate is 93. 3% ,average response time of smoke alarmis 0. 9 s. Compared to other methods,it has a certain improvement in smoke detection accuracy,smoke detection rate and smoke alarm response time.

相似文献/References:

[1]黎粤华,单磊,田仲富,等. 基于多特征融合的视频烟雾检测[J].计算机技术与发展,2016,26(01):129.
 LI Yue-hua,SHAN Lei,TIAN Zhong-fu,et al. Video Smoke Detection Based on Multi Feature Fusion Technology[J].,2016,26(05):129.

更新日期/Last Update: 2022-05-10