[1]马畅畅,汪 坤,鹿晓梦,等.一种确定目标域多目标优化算法 NSGA/ P[J].计算机技术与发展,2022,32(05):15-21.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 003]
 MA Chang-chang,WANG Kun,LU Xiao-meng,et al.A Multi-objective Optimization Algorithm for Determinant Objective Domain NSGA / P[J].,2022,32(05):15-21.[doi:10. 3969 / j. issn. 1673-629X. 2022. 05. 003]
点击复制

一种确定目标域多目标优化算法 NSGA/ P()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年05期
页码:
15-21
栏目:
人工智能
出版日期:
2022-05-10

文章信息/Info

Title:
A Multi-objective Optimization Algorithm for Determinant Objective Domain NSGA / P
文章编号:
1673-629X(2022)05-0015-07
作者:
马畅畅12 汪 坤12 鹿晓梦12 陈未如12
1. 沈阳化工大学 计算机科学与技术学院,辽宁 沈阳 110142;
2. 辽宁省化工过程工业智能化技术重点实验室,辽宁 沈阳 110142
Author(s):
MA Chang-chang12 WANG Kun12 LU Xiao-meng12 CHEN Wei-ru12
1. School of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China;
2. Liaoning Key Laboratory of Industrial Intelligence Technology on Chemical Process,Shenyang 110142,China
关键词:
多目标优化确定目标域投影面自由维NSGAIIMOEA / P
Keywords:
multi-objective optimizationdeterminant objective domainprojection planefree dimensionNSGAIIMOEA / P
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 05. 003
摘要:
为了使多目标进化算法在求解多目标优化问题时能够更好地收敛到 Pareto 最优解,在 NSGA-II 算法基础上,借鉴MOEA / P 算法的思想,提出确定目标域多目标优化算法 NSGA / P,将 NSGA-II 算法与 MOEA / P 算法思想结合,实现确定目标域内的最优值的求取。 NSGA-II 是一种求解多目标优化问题的经典算法;MOEA / P 是一种基于投影面的多目标优化算法,更加适用于求解超多目标优化问题。 NSGA / P 算法采用 MOEA / P 思想,将整个决策空间划分为投影面和自由维,根据决策者的需求确定目标域,以此为投影面,并在自由维上采用 NSGA-II 算法进行寻优,提高了算法的效率。 通过对大量的实验结果分析及验证,发现 NSGA / P 算法增加了解的多样性,提高了算法的收敛性能,并有效地改善了求解复杂优化问题的能力,证明 NSGA / P 算法在求取确定目标域的多目标优化问题上有一定的优势。
Abstract:
In order to make the multi-objective evolutionary algorithm can better converge to the Pareto optimal solution when solving the multi-objective optimization problem,a multi-objective optimization algorithm NSGA / P is proposed based on NSGA-II algorithm and the idea of MOEA / P algorithm. The NSGA-II algorithm is combined with the idea of MOEA / P algorithm to achieve the optimal value in the determinant objective domain. NSGA-II is a classical algorithm for solving multi-objective optimization problems. MOEA / P is a multi- objective optimization algorithm based on projection plane, which is more suitable for solving many - objective optimization problems. NSGA / P algorithm adopts the idea of MOEA / P,the whole decision space is divided into projection plane and free dimension,and the objective domain is determinant according to  the needs of the decision maker,which is used as the projection plane. In the free dimension,NSGA - II algorithm is used for optimization, which improves the efficiency of the algorithm. Through the analysis and verification of a large number of experimental results,it is found that the NSGA / P algorithm increases the diversity of the set,improves the convergence performance of the algorithm,and effectively improves the ability to solve complex optimization problems. It is proved the NSGA / P algorithm have a certain advantage in calculating determinant objective domain on the multi-objective optimization problem.

相似文献/References:

[1]廖宁 刘建勋 王俊年.DPSO算法在服务网格资源调度中的应用[J].计算机技术与发展,2009,(08):104.
 LIAO Ning,LIU Jian-xun,WANG Jun-nian.Application of Discrete Particle Swarm Optimization Algorithm to Service Grid Resource Optimization Scheduling[J].,2009,(05):104.
[2]王丽红 倪志伟 高雅卓.改进的蚁群算法求解多目标车间作业调度问题[J].计算机技术与发展,2008,(10):49.
 WANG Li-hong,NI Zhi-wei,GAO Ya-zhuo.An Improved Ant Colony Algorithm for Multi - Objective Job - Shop Scheduling Problem[J].,2008,(05):49.
[3]饶玉佳 程家兴 夏军 李志俊.基于佳点集的多目标遗传算法[J].计算机技术与发展,2008,(12):67.
 RAO Yu-jia,CHENG jia-xing,XIA Jun,et al.Multi- Objective Optimization Genetic Algorithm Based on Good Point Set[J].,2008,(05):67.
[4]罗景峰 刘艳秋.一种全终端网络可靠性多目标优化模型及求解[J].计算机技术与发展,2007,(08):23.
 LUO Jing-feng,LIU Yan-qiu.A Multi- Objective Optimization Model for All- Terminal Networks Reliability and Its Solutions[J].,2007,(05):23.
[5]吴昊,杨佳,王会颖,等.求解人力资源分配问题的多目标和声搜索算法[J].计算机技术与发展,2013,(02):65.
 WU Hao,YANG Jia,WANG Hui-ying,et al.Multi-objective Harmony Search Algorithm for Solving Human Resource Allocation Problem[J].,2013,(05):65.
[6]王越,吕光宏.改进的粒子群求解多目标优化算法[J].计算机技术与发展,2014,24(02):42.
 WANG Yue,Lü Guang-hong.Modified Particle Swarm Optimization Algorithm Solving Multi-objective[J].,2014,24(05):42.
[7]殷小龙,李君,万明祥. 云环境下基于改进NSGA II的虚拟机调度算法[J].计算机技术与发展,2014,24(08):71.
 YIN Xiao-long,LI Jun,WAN Ming-xiang. Virtual Machines Scheduling Algorithm Based on Improved NSGA II in Cloud Environment[J].,2014,24(05):71.
[8]刘慧慧. 一种改进的粒子群多目标优化算法研究[J].计算机技术与发展,2015,25(01):87.
 LIU Hui-hui. Research on an Improved Multi-objective Optimization Algorithm of Particle Swarm[J].,2015,25(05):87.
[9]黄志川,吴蒙. 多目标优化的相控阵三维方向调制方法[J].计算机技术与发展,2016,26(11):111.
 HUANG Zhi-chuan,WU Meng. Three-dimensional Direction Modulation of Phased Array Based on Multi-objective Optimization[J].,2016,26(05):111.
[10]娄艳秋[],庄毅[],顾晶晶[],等. 协同干扰环境下基于IMOABC的任务调度方法[J].计算机技术与发展,2017,27(11):46.
 LOU Yan-qiu[],ZHUANG Yi[],GU Jing-jing[],et al. A Task Scheduling Method Based on IMOABC in Collaboration Interference Environment[J].,2017,27(05):46.

更新日期/Last Update: 2022-05-10