[1]李 艳,郝 飞*,马 苗.基于形式概念分析的新冠肺炎疫情大数据挖掘[J].计算机技术与发展,2022,32(04):146-150.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 025]
 LI Yan,HAO Fei*,MA Miao.COVID-19 Big Data Mining Based on Formal Concept Analysis[J].,2022,32(04):146-150.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 025]
点击复制

基于形式概念分析的新冠肺炎疫情大数据挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年04期
页码:
146-150
栏目:
应用前沿与综合
出版日期:
2022-04-10

文章信息/Info

Title:
COVID-19 Big Data Mining Based on Formal Concept Analysis
文章编号:
1673-629X(2022)04-0146-05
作者:
李 艳郝 飞* 马 苗
陕西师范大学 计算机科学学院,陕西 西安 710119
Author(s):
LI YanHAO Fei* MA Miao
School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
关键词:
新冠疫情数据挖掘临床特征形式概念分析疫情防控
Keywords:
COVID-19data miningclinical featuresformal concept analysisepidemic prevention and control
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 04. 025
摘要:
形式概念分析是一种分析数据和提取规则的有力工具,其核心结构-概念格体现了对象与属性间的统一,通过构造概念格可以挖掘数据中隐含的概念,以及概念之间的层次关系。 因此,在大数据的背景下,运用形式概念分析理论,从大量数据中进行规则提取和发现是切实可行并且大有可为的。 该文将之引入到新冠肺炎患者医疗数据的分析中来,通过构建形式背景和概念格来探究新冠肺炎病理学潜在模式,并通过统计学方法分析患者性别、年龄、临床症状分布规律;然后,用 Pearson 相关系数探究新冠肺炎与不同影响因素间的隐含联系,并进行了相关实验分析。 得出结论:新冠肺炎各年龄段人群普遍易感,其中,中老年人和慢性病患者感染的可能性更大。 新冠肺炎临床症状主要表现为发热和咳嗽,部分个体会伴随有肌肉疼痛、咽喉疼、疲劳等症状。 最后,以上述分析结果为基础,提出相应的防控策略。
Abstract:
Formal concept analysis ( FCA) is a powerful tool for data analysis and rule extraction. Its core structure, concept lattice,reflects the unity? between objects and attributes. By constructing concept lattice,implicit concepts in data and hierarchical relationships between concepts can? ? ? be mined. Therefore,in the context of big data,it is feasible and promising to use FCA to extract and discover rules from a large amount of data. We introduce FCA into the analysis of medical data of COVID-19 patients to explore potential pathological patterns of COVID-19 by constructing formal background and concept lattice,and to analyze the distribution rules of gender,age and clinical symptoms of patients by statistical methods. Then,we explore the implicit connection between the COVID-19 and different influencing factors with Pearson correlation coefficient, and carry out relevant experimental analysis. It is concluded that COVID - 19 is widespread among people of all ages,with middle-aged and elderly people and those with chronic diseases more likely to be infected.The clinical symptoms of COVID-19 are mainly fever and cough,and some people will experience symptoms such as muscle pain,sore throat,and fatigue. Finally,the corresponding prevention and control strategies are suggested based on the analysis results.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(04):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(04):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(04):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(04):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(04):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(04):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(04):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(04):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(04):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(04):113.

更新日期/Last Update: 2022-04-10