[1]王志晓,李卓淳,闫文耀.基于 Bi-LSTM+Attention 公共安全危机识别[J].计算机技术与发展,2022,32(04):134-139.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 023]
 WANG Zhi-xiao,LI Zhuo-chun,YAN Wen-yao.Public Safety Crisis Recognition Based on Bi-LSTM+Attention[J].,2022,32(04):134-139.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 023]
点击复制

基于 Bi-LSTM+Attention 公共安全危机识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年04期
页码:
134-139
栏目:
应用前沿与综合
出版日期:
2022-04-10

文章信息/Info

Title:
Public Safety Crisis Recognition Based on Bi-LSTM+Attention
文章编号:
1673-629X(2022)04-0134-06
作者:
王志晓12 李卓淳1 闫文耀3
1. 西安理工大学 计算机科学与工程学院,陕西 西安 710048;
2. 陕西省网络计算与安全技术重点实验室,陕西 西安 710048;
3. 延安大学 西安创新学院,陕西 西安 710100
Author(s):
WANG Zhi-xiao12 LI Zhuo-chun1 YAN Wen-yao3
1. School of Computer Science and Engineering,Xi’an University of Technology,Xi’an 710048,China;
2. Shaanxi Key Laboratory of Network Computing and Security,Xi’an 710048,China;
3. School of Xi’an Innovation,Yan’an University,Xi’an 710100,China
关键词:
公共安全社交媒体家庭暴力深度学习文本挖掘
Keywords:
public safetysocial mediadomestic violence ( DV) deep learningtext mining
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 04. 023
摘要:
公共安全危机对社会稳定和人权构成威胁,令人担忧。 社交媒体上帖子的可用性使得公共安全危机更容易被探测。 然而, 手动浏览和分析大量可用 帖子耗时且效率低下。 鉴于深度学习技术在自然语言处理方面的优势,采用深度学习技术自动识别潜在的公共安全危机成为当前的迫切需求。文中 以家庭暴力危机为例,将社交媒体 Facebook 上有关家庭暴力的英文帖子作为研究对象, 通过 Facebook GraphAPI 获取后进行文本预处理。 采用 Word2vec 方法构建词向量模型,使用 Bi-LSTM+self-Attention(SA-BiLSTM) 深度学习模型完成了家庭暴力危机识别任务,并与 CNN、RNN( recurrent neuralnetwork,循环神经网络)、LSTM 三个神经网络模型进行了比较。 实验结果显示,CNN 和 LSTM 模型表现明显好于 RNN,与SA-BiLSTM 模型表现相接近;同时,使用 self-Attention 机制后 Bi-LSTM 模型综合表现最好, F1 值、召回率、准确率均最高,其中召回率和准确率超过 90% 。 该研究成果将为使用深度学习技术自动探测公共安全危机问题提供参考和帮助。
Abstract:
Public safety crisis is a cause of great concern due to the threat toward social stability and human rights. The availability of posts on social media has allowed public safety crisis to be detected more easily. However, it is time consuming and inefficient to manually browse through a massive number of available posts. Therefore, considering the advantages of deep learning technology in natural language processing,adopting deep learning as an approach for automatic identification of public safety crisis is in critical need.We consider domestic violence ( DV) crisis as the example,take Facebook English posts about DV as the research object and implement text processing after getting them by GraphAPI. Then we use Word2Vec to build word vector model and Bi-LSTM+self-Attention (SA-BiLSTM) deep learning model to accomplish DV crisis recognition task,compare it with CNN, RNN and LSTM. The experiment show sthat the performances of CNN and LSTM are close to SA-BiLSTM,which is better than RNN. And the performance of SA-BiLSTM is the best with the highest F1,recall and accuracy,both of recall and accuracy values are above 90% . The research results will provide reference and help for the use of deep learning technology to automatically identify public safety crisis issues.

相似文献/References:

[1]刘缨[][],尹珩[],戴文娟[]. 基于台标识别的网络视频分类系统[J].计算机技术与发展,2016,26(10):87.
 LIU Ying[][],YIN Hang[],DAI Wen-juan[]. A Classification System for Internet Videos Based on TV Logo Recognition[J].,2016,26(04):87.
[2]王冰玉,吴振宇,沈苏彬,等.社交媒体事件检测研究综述[J].计算机技术与发展,2018,28(09):105.[doi:10.3969/j.issn.1673-629X.2018.09.022]
 WANG Bingyu,WU Zhenyu,SHEN Subin,et al.Survey on Event Detection Research in Social Media[J].,2018,28(04):105.[doi:10.3969/j.issn.1673-629X.2018.09.022]
[3]刘家祝,郭 强,吴碧伟,等.基于子图相交的社交账号与知识图谱实体对齐[J].计算机技术与发展,2020,30(05):10.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
 LIU Jia-zhu,GUO Qiang,WU Bi-wei,et al.Subgraph Intersection Based Alignment between Social Media Account and Knowledge Graph Entity[J].,2020,30(04):10.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
[4]黎洁仪,梁之彦,范绍佳,等.线上降雨灾情检测系统设计与应用[J].计算机技术与发展,2022,32(08):191.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 031]
 LI Jie-yi,LIANG Zhi-yan,FAN Shao-jia,et al.Design and Application of Online Rainfall Disaster Detection System[J].,2022,32(04):191.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 031]

更新日期/Last Update: 2022-04-10