[1]谢君臣,李 涛*,黄 甫,等.面向药店会员用户画像的构建及应用研究[J].计算机技术与发展,2022,32(03):145-150.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 024]
 XIE Jun-chen,LI Tao*,HUANG Fu,et al.Research on Construction and Application of User Portrait for Pharmacy Members[J].,2022,32(03):145-150.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 024]
点击复制

面向药店会员用户画像的构建及应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年03期
页码:
145-150
栏目:
应用前沿与综合
出版日期:
2022-03-10

文章信息/Info

Title:
Research on Construction and Application of User Portrait for Pharmacy Members
文章编号:
1673-629X(2022)03-0145-06
作者:
谢君臣李 涛* 黄 甫常 远
武汉科技大学 计算机科学与技术学院,湖北 武汉 430065
Author(s):
XIE Jun-chenLI Tao* HUANG FuCHANG Yuan
School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China
关键词:
大数据用户画像知识融合多视角信息熵
Keywords:
big datauser portraitsknowledge fusionmultiple perspectivesinformation entropy
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 03. 024
摘要:
针对现阶段医疗领域的用户画像研究方法存在数据收集模式单一、对数据分析力度不够和对知识的融合较差导致构建的用户画像维度单一、精准度较低的问题,提出一种基于多视角、多维度的药店会员用户画像的构建方法。 分别从传统的消费视角和医药视角,从用户基本属性、用户社会属性、用户行为属性、用户消费属性、用户价值属性、用户生命周期属性和用户医药属性等维度进行数据分析,挖掘传统的画像特征和针对药品特殊商品的关于会员消费、购药周期、疾病特征的医药属性特征。 同时构建信息熵分析模型,降低扩充特征维度对传统的用户画像精准度的扰动,从而构建药店会员的用户画像。 实验结果表明,相对于传统方法构建的用户画像,在大数据集上的精确度提高了 15. 41% 。
Abstract:
In view of the problems of single dimension and low accuracy of user portrait construction caused by single data collection mode,insufficient data analysis and poor knowledge fusion in current user portrait research methods in? ? ? ? ? the medical field,we propose a construction method of drugstore member user portrait based on multi-perspective and? ? multi- dimension. From the perspective of traditional consumption and medicine respectively,we analyze the data from? the dimensions of user basic attributes,user social attributes,user behavior attributes, user consumption attributes, user value attributes, user life cycle attributes and user medicine attributes, and excavate the traditional portrait features and medical attribute features of members 爷 consumption, purchasing cycle, and disease characteristics for special drug products. At the same time,the information entropy analysis model is constructed to reduce the disturbance of the extended feature dimension on the accuracy of traditional user portrait,so as to construct the user portrait of pharmacy members.The experimental results show that compared with the traditional method,the accuracy of user portraits on large data sets is improved by15. 41% .

相似文献/References:

[1]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,(04):168.
 YAN Xiao-feng,ZHANG De-xin.Big Data Research[J].,2013,(03):168.
[2]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].,2014,24(03):14.
[3]金宗泽,冯亚丽,文必龙,等. 大数据分析流程框架的研究[J].计算机技术与发展,2014,24(08):117.
 JIN Zong-ze,FENG Ya-l,WEN Bi-long,et al. Research on Framework of Big Data Analytic Process[J].,2014,24(03):117.
[4]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].,2014,24(03):68.
[5]谢怡,王航,刘新瀚,等. 大数据环境下数据读取关键技术研究[J].计算机技术与发展,2015,25(02):113.
 XIE Yi,WANG Hang,LIU Xin-han,et al. Research on Data Reading Techniques Based on Big Data Environment[J].,2015,25(03):113.
[6]付燕平,罗明宇,刘其军. 大数据三维模型快速显示技术研究[J].计算机技术与发展,2015,25(05):87.
 FU Yan-ping,LUO Ming-yu,LIU Qi-jun. Research on Fast Display Technology for Big Data Three-dimensional Model[J].,2015,25(03):87.
[7]赵震,任永昌. 大数据时代基于云计算的电子政务平台研究[J].计算机技术与发展,2015,25(10):145.
 ZHAO Zhen,REN Yong-chang. Research on E-government Platform Based on Cloud Computing in Big Data Era[J].,2015,25(03):145.
[8]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].,2015,25(03):14.
[9]孔钦,叶长青,孙赟.大数据下数据预处理方法研究[J].计算机技术与发展,2018,28(05):1.[doi:10.3969/j.issn.1673-629X.2018.05.001]
 KONG Qin,YE Changqing,SUN Yun.Research on Data Preprocessing Methods for Big Data[J].,2018,28(03):1.[doi:10.3969/j.issn.1673-629X.2018.05.001]
[10]杨明,李铁冰,姜茸,等.基于AHP 的大数据可用性及挖掘方案模型研究[J].计算机技术与发展,2018,28(05):51.[doi:10.3969/j.issn.1673-629X.2018.05.012]
 YANG Ming,LI Tie-bing,JIANG Rong,et al.Research on Model of Big Data Usability and Mining Strategy Based on AHP[J].,2018,28(03):51.[doi:10.3969/j.issn.1673-629X.2018.05.012]
[11]姜红玉,汪 朋,封 雷.基于流式计算的实时用户画像系统研究[J].计算机技术与发展,2020,30(07):186.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 039]
 JIANG Hong-yu,WANG Peng,FENG Lei.Research on Real-time User Profile System Based on Stream Computing[J].,2020,30(03):186.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 039]

更新日期/Last Update: 2022-03-10