[1]李志刚,刘自强,张 辉.基于国产平台的可视化分析诊断系统[J].计算机技术与发展,2022,32(03):96-101.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 016]
 LI Zhi-gang,LIU Zi-qiang,ZHANG Hui.Visual Analysis and Diagnosis System Based on Domestic Platform[J].,2022,32(03):96-101.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 016]
点击复制

基于国产平台的可视化分析诊断系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年03期
页码:
96-101
栏目:
系统工程
出版日期:
2022-03-10

文章信息/Info

Title:
Visual Analysis and Diagnosis System Based on Domestic Platform
文章编号:
1673-629X(2022)03-0096-06
作者:
李志刚刘自强张 辉
中国电子科技集团公司第五十二研究所,浙江 杭州 311100
Author(s):
LI Zhi-gangLIU Zi-qiangZHANG Hui
52nd Research Institute of China Electronics Technology Group Corporation,Hangzhou 311100,China
关键词:
日志解析异常检测知识管理推理诊断可视化监测分层架构
Keywords:
log parsingexception detectionknowledge managementreasoning diagnosisvisual monitoringhierarchical architecture
分类号:
TP302
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 03. 016
摘要:
随着国产平台在各行业信息系统中的推广使用,其系统规模及复杂度日益提高,可靠运行面临较大挑战。 针对面临的问题及挑战,从故障快速定位排查入手,对国产平台在运行维护和故障诊断排查中存在的问题进行分析,设计一种集日志分析、智能诊断和可视化监测等技术相融合的可视化分析诊断系统。 基于日志分析可从大量日志噪声数据中自动识别关键信息并进行异常检测;通过智能推理诊断,可实现在错综复杂环境中故障的快速诊断及排查;通过可视化监测,以用户易懂的方式可视化展现众多监测数据,可提高用户对系统运行状态的理解和把控。 该系统在传统监控的基础上,通过融入日志聚类异常检测技术、专家推理诊断技术和数据可视化技术,可有效提高国产平台的故障排查速度和可靠运行水平。
Abstract:
With the popularization and application of domestic platform in various industry information systems,the scale and complexity of the system are increasing,and the reliable operation is facing great challenges. Aiming at the problems? ?and challenges,we analyze the problems existing in the operation and maintenance and fault diagnosis of domestic platforms from the perspective of rapid fault location and troubleshooting, and design a visual analysis and diagnosis system integrating log analysis, intelligent diagnosis and visual monitoring. Based on log analysis, key information can? be automatically identified from a large number of log data and abnormal detection can be carried out. Through intelligent reasoning diagnosis,fault diagnosis and troubleshooting in complex environment can be realized quickly. Through visual monitoring,a large number of monitoring data can be visualized in a way that is easy for users to understand,which can improve the overall control of system operation state by users. On the basis of traditional monitoring,the system can effectively improve the troubleshooting speed and reliable operation level of domestic platform by integrating log clustering anomaly detection technology,expert reasoning diagnosis technology and data visualization technology.

相似文献/References:

[1]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(03):148.
[2]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(03):168.
[3]汪慧敏.基于改进负选择算法的异常检测[J].计算机技术与发展,2009,(08):41.
 WANG Hui-min.Anomaly Detection Using Modified Negative Selection Algorithm[J].,2009,(03):41.
[4]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(03):159.
[5]陈丹伟 黄秀丽 任勋益.基于人工神经网络入侵检测模型的探讨[J].计算机技术与发展,2009,(12):143.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.An Approach to IDS Model Based on Artificial Neuron Network[J].,2009,(03):143.
[6]柏海滨 李俊.基于支持向量机的入侵检测系统的研究[J].计算机技术与发展,2008,(04):137.
 BAI Hai-bin,LI Jun.Research of Intrusion Detection System Based on Support Vector Machine[J].,2008,(03):137.
[7]宋连涛 庄卫华.基于异常的入侵检测技术在Snort系统中的应用[J].计算机技术与发展,2006,(06):136.
 SONG Lian-tao,ZHUANG Wei-hua.Application of Anomaly Detection Technology in Snort System[J].,2006,(03):136.
[8]陈平 宋玉蓉 蒋国平.基于多维聚类挖掘的异常检测方法研究[J].计算机技术与发展,2012,(07):136.
 CHEN Ping,SONG Yu-rong,JIANG Guo-ping.Multidimensional Clustering Based Anomaly Detection Research[J].,2012,(03):136.
[9]崔锡鑫,苏伟,刘颖.基于熵的流量分析和异常检测技术研究与实现[J].计算机技术与发展,2013,(05):120.
 CUI Xi-xin,SU Wei,LIU Ying.Research and Implementation of Traffic Analysis and Anomaly Detection Technology Based on Entropy[J].,2013,(03):120.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.

更新日期/Last Update: 2022-03-10