[1]祝 贺,于子兴.一种基于双速度特征的轨迹划分方法[J].计算机技术与发展,2022,32(01):61-66.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 011]
 ZHU He,YU Zi-xing.A Trajectory Partition Method Based on Double Velocities[J].,2022,32(01):61-66.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 011]
点击复制

一种基于双速度特征的轨迹划分方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年01期
页码:
61-66
栏目:
大数据分析与挖掘
出版日期:
2022-01-10

文章信息/Info

Title:
A Trajectory Partition Method Based on Double Velocities
文章编号:
1673-629X(2022)01-0061-06
作者:
祝 贺于子兴
南京邮电大学 计算机学院,江苏 南京 210023
Author(s):
ZHU HeYU Zi-xing
School of Computer Science and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
数据挖掘轨迹划分移动特征双速度特征停留点提取
Keywords:
data miningtrajectory partitionmovement featuresdouble velocities featuresresident points acquisition
分类号:
TP302. 7
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 01. 011
摘要:
轨迹数据挖掘对于基于位置的应用非常重要,而轨迹划分是轨迹数据挖掘的重要步骤。 节点的运动轨迹数量很大,轨迹形状迥异千差万别,使得轨迹划分成为轨迹数据挖掘的关键和难点。 轨迹划分的目的是去掉多余的轨迹点,留下重要的轨迹点数据,且要求处理后得到的轨迹留有原来轨迹的特征。 该文从速度和加速度等方面分析了节点的运动行为,提出了一种基于双速度特征的轨迹划分方法( trajectory partition method based on double velocities,TPDV)。 在 TPDV 中,首先通过检测节点移动速度的变化来找出速度改变点,并且根据节点加速度变化也可提取出特征点,然后在检测节点的速度和加速度变化的前提下,根据节点活动的时间和范围来确定停留点,最后根据提取的特征点对子轨迹进行划分。 基于 Geolife 轨迹数据集的仿真结果表明,基于双速度特征的轨迹划分方法在运行时间、简化率和划分误差方面都表现较好。
Abstract:
rajectory data mining has become an increasing concern in the location-based applications,and the trajectory partition is takenas the primary procedure of trajectory data mining. The amount of movement trajectories of nodes is typically large,and the trajectoryshapes are extremely different from each other, which makes the trajectory partition be a key problem to the trajectory data mining. Thepurpose of the trajectory partition is to retain the vitaltrajectory data while removing the redundant data in the trajectories, so that thesimplified trajectories retain the characteristics of the original trajectories. In this paper,the movement behaviors of nodes are analyzedfrom the aspects of moving speeds and moving acceleration, and then a novel trajectory partition method based on double velocities( TPDV) is proposed to partition the trajectories. In TPDV,we first extract the switch points in which the movement speeds of nodes arevaried significantly. Then we extract the change points where the accelerated speeds of nodes are varied significantly. Finally, bydetecting the variations of movement speeds and accelerated velocities of nodes,we obtain the resident points according to the time andmotion ranges. According to the extracted feature points, we can partition the sub - trajectories. Simulations on the Geolife trajectorydataset indicate that TPDV can achieve a preferable trade-off among the simplification rate,running time and error rate.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(01):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(01):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(01):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(01):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(01):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(01):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(01):113.

更新日期/Last Update: 2022-01-10