[1]仇秋飞,周武源,雷良育,等.深度学习在机器人领域的应用进展[J].计算机技术与发展,2021,31(11):208-215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 034]
 QIU Qiu-fei,ZHOU Wu-yuan,LEI Liang-yu,et al.Deep Learning in Robotics:Hotspots and Progress[J].,2021,31(11):208-215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 034]
点击复制

深度学习在机器人领域的应用进展()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年11期
页码:
208-215
栏目:
应用前沿与综合
出版日期:
2021-11-10

文章信息/Info

Title:
Deep Learning in Robotics:Hotspots and Progress
文章编号:
1673-629X(2021)11-0208-08
作者:
仇秋飞1 周武源1 雷良育2 吴叶青1 崔银江1 陈 登1
1. 浙江省科技信息研究院,浙江 杭州 310006;
2. 浙江农林大学 工程学院,浙江 杭州 310006
Author(s):
QIU Qiu-fei1 ZHOU Wu-yuan1 LEI Liang-yu2 WU Ye-qing1 CUI Yin-jiang1 CHEN Deng1
1. Zhejiang Academy of Science and Technology Information,Hangzhou 310006,China;
2. School of Engineering,Zhejiang A&F University,Hangzhou 310006,China
关键词:
深度学习机器人学交叉学科SciVal研究热点
Keywords:
deep learningroboticsinterdisciplinarySciValresearch hotspots
分类号:
TP181;TP242
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 11. 034
摘要:
机器人正朝着智能化方向快速发展,深度学习作为人工智能最前沿的一个分支,其突破性发展促进了人工智能领域的爆发性增长,已广泛应用于机器人学的感知、决策、控制等相关技术领域。 为加强科技发展战略谋划和系统布局,利用 SciVal 文献分析平台对深度学习与机器人学的交叉学科的发展态势进行了系统梳理和分析,并对深度学习重要算法的应用进行了综述。 结果表明:中国的学术产出已达第一,但学术影响力落后于欧美,并缺少高产出的学者;当前的研究重点是计算机视觉,研究热点是卷积神经网络用于机器人对象检测及深度 Q 学习用于辅助决策等;深度学习元学习、分布式深度学习、三维深度 CNN、深度学习融合应用展现出有良好的前景,将推动机器人学向人机混合的增强智能与智能自主化方向发展;通过比较中国与欧美发达国家的优劣势,提出了相应的对策建议。 研究结果展现了深度学习与机器人学交叉学科领域的全貌,为研究人员提供了有价值的参考。
Abstract:
As one of the most cutting-edge technologies,deep learning has promoted the explosive growth of artificial intelligence and has been widely? ?used in the perception,decision-making and control of robots. In order to strengthen the strategic planning and system aticlay out of science? ? and technology development, the trends and hot spots of deep learning in robotics is systematically analyzed using SciVal,and the applications? ?of deep learning algorithms are reviewed. The results show that Chinese scholarly output has reached the first place in the world, but its academic influence lags behind that of US and Europe, and lacks scholars with high output. The current research focuses on computer vision, and the research hot spots are convolutional neural network for robotic object detection and deep Q-learning for decision assistance. Deep learning meta-learning, distributed deep learning, 3D deep CNN, and deep learning fusion applications show promising prospects that will drive robotics toward human-machine hybrid augmented intelligence and intelligent autonomy. Through the comparative study of the advantages and disadvantages of China and other countries,the corresponding countermeasures and suggestions are put forward. The results present the full picture of the interdisciplinary field of deep learning and robotics,and provide a valuable reference for researchers.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(11):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(11):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(11):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(11):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(11):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(11):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].,2020,30(11):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(11):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].,2021,31(11):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(11):7.

更新日期/Last Update: 2021-11-10