[1]马 华,黄卓轩*,唐文胜.面向个性化学习的认知诊断模型及其应用综述[J].计算机技术与发展,2021,31(11):35-40.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 006]
 MA Hua,HUANG Zhuo-xuan*,TANG Wen-sheng.Review on Cognitive Diagnosis Model and Its Application forPersonalized Learning[J].,2021,31(11):35-40.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 006]
点击复制

面向个性化学习的认知诊断模型及其应用综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年11期
页码:
35-40
栏目:
大数据分析与挖掘
出版日期:
2021-11-10

文章信息/Info

Title:
Review on Cognitive Diagnosis Model and Its Application forPersonalized Learning
文章编号:
1673-629X(2021)11-0035-06
作者:
马 华黄卓轩* 唐文胜
湖南师范大学 信息科学与工程学院,湖南 长沙 410081
Author(s):
MA HuaHUANG Zhuo-xuan* TANG Wen-sheng
School of Information Science and Engineering,Hunan Normal University,Changsha 410081,China
关键词:
个性化学习在线学习认知诊断模型应用研究综述
Keywords:
personalized learningonline learningcognitive diagnosis modelapplication researchreview
分类号:
TP331
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 11. 006
摘要:
近年来,随着在线学习的大规模普及与应用,各类在线学习平台上已经累积了海量的学生学习相关的历史数据,这为开展教育数据挖掘提供了重要的研究基础。 基于学生认知诊断分析的教育数据挖掘可为学生的个性化学习辅导提供重要的决策依据,目前已经吸引了国内外相关学者的广泛关注,并取得了一系列重要的研究进展。 通过对面向在线个性化学习的认知诊断模型的研究现状进行综述,阐述了项目反应理论和 DINA( deterministic inputs, noisy and-gate) 模型的特点和不足,介绍了多种改进的 DINA 模型以及其他有代表性的认知诊断模型。 并且分析了当前认知诊断模型在个性化辅助学习中的典型应用领域及代表性成果,典型应用领域包括学生考试成绩的预测、个性化学习资源推荐和协同学习小组构建等。 最后,总结全文工作并对面向在线个性化学习的认知诊断模型研究的未来方向进行了展望。
Abstract:
With the large-scale popularization and application of online learning recently,the mass of historical data related to students and their learning have been accumulated on online learning platforms,which can provide an important research basis for educational data mining. The educational data mining based on cognitive diagnosis analysis can provide the important decision - making basis for personalized learning guidance,and has attracted extensive attention from relevant scholars at home and abroad. A series of important research advances have been made. The research progress of cognitive diagnosis models ( CDMs) for the online personalized learning is reviewed. The characteristics and shortcomings of the item response theory and DINA ( deterministic inputs,noisy and-gate) model are explained,and the improved DINA models and other representative CDMs are summarized. Furthermore,the classical application fields and their representative research on CDMs in personalized learning are elaborated. These application fields include examine performance prediction,personalized learning resource recommendation,collaborative learning group formation,etc. Finally,the work is summarized and the future research directions of CDMs in personalized learning are discussed.

相似文献/References:

[1]王雪松 申群太.基于多Agent系统的自调节及协同工作的组合投资模型[J].计算机技术与发展,2010,(05):117.
 WANG Xue-song,SHEN Qun-tai.Combination Investment Model of Auto-Adjustment and Cooperate with Work Based on Multi-Agent System[J].,2010,(11):117.
[2]王娟 柴玉梅.基于多议题协商的贝叶斯学习[J].计算机技术与发展,2006,(02):154.
 WANG Juan,CHAI Yu-mei.A Bayesian Learning Based on Multi- Issues Negotiation[J].,2006,(11):154.
[3]范莉莎 刘刚 刘志镜.Web数据挖掘在网络教育中的应用[J].计算机技术与发展,2006,(06):68.
 FAN Li-sha,LIU Gang,LIU Zhi-jing.Application of Web Data Mining in Web - Based Education[J].,2006,(11):68.
[4]黄勇 李玉华.数据挖掘在《大学物理》网络教学中的应用[J].计算机技术与发展,2006,(11):175.
 HUANG Yong,LI Yu-hua.A Practical Study on Data Mining in Individualized Network Teaching of College Physics[J].,2006,(11):175.
[5]郭新. 一种改进的短期交通流量预测算法研究[J].计算机技术与发展,2015,25(02):103.
 GUO Xin. Research on an Improved Prediction Algorithm for Short-term Traffic Flow [J].,2015,25(11):103.
[6]何利雪,陈健. 基于ERBAC模式的在线考试模型研究与实现[J].计算机技术与发展,2015,25(04):139.
 HE Li-xue,CHEN Jian. Research and Realization of Online Test/Examination System Based on an ERBAC Model[J].,2015,25(11):139.
[7]徐新瑞,孟彩霞,周雯,等. 一种基于Spark时效化协同过滤推荐算法[J].计算机技术与发展,2015,25(06):48.
 XU Xin-rui,MENG Cai-xia,ZHOU Wen,et al. A Real-time Collaborative Filtering Recommendation Algorithm Based on Spark[J].,2015,25(11):48.
[8]佘雅莉,周 良.基于改进在线序列学习机的危险源识别算法[J].计算机技术与发展,2018,28(09):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
 SHE Ya-li,ZHOU Liang.Hazard Identification Algorithm Based on Improved Online Sequential Extreme Learning Machine[J].,2018,28(11):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
[9]郎 波,樊一娜.基于深度神经网络的个性化学习行为评价方法[J].计算机技术与发展,2019,29(07):6.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 002]
 LANG Bo,FAN Yi-na.Personalized Learning Behavior Evaluation Method Based on Deep Neural Network[J].,2019,29(11):6.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 002]
[10]吴 垒,于哲舟.基于概率神经网络的在线分类器[J].计算机技术与发展,2019,29(12):14.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 003]
 WU Lei,YU Zhe-zhou.An Improved Classifier Based on Probabilistic Neural Network[J].,2019,29(11):14.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 003]

更新日期/Last Update: 2021-11-10