[1]杨思元,陈小恵,王凯莉,等.一种改进的 PPG 信号稀疏分解身份识别方法[J].计算机技术与发展,2021,31(09):55-60.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 010]
 YANG Si-yuan,CHEN Xiao-hui,WANG Kai-li,et al.An Improved Identification Method Based on Sparse Coding of PPG Signal[J].,2021,31(09):55-60.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 010]
点击复制

一种改进的 PPG 信号稀疏分解身份识别方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年09期
页码:
55-60
栏目:
图形与图像
出版日期:
2021-09-10

文章信息/Info

Title:
An Improved Identification Method Based on Sparse Coding of PPG Signal
文章编号:
1673-629X(2021)09-0055-06
作者:
杨思元陈小恵王凯莉梁 莹
南京邮电大学 自动化 / 人工智能学院,江苏 南京 210023
Author(s):
YANG Si-yuanCHEN Xiao-huiWANG Kai-liLIANG Ying
School of Automation / Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
光电血容积脉搏波信号稀疏分解匹配追踪分类识别决策树
Keywords:
PPG signalssparse codingmatching pursuitclassification recognitiondecision tree
分类号:
TP391. 41
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 09. 010
摘要:
光电血容积脉搏波(photo plethysmo graph, PPG) 信号作为人体的一种固有的生理信号, 包含了人体大量的病理、生理信息,不同个体之间的 PPG 信号存在着很大的差异,具有很好的保密性和唯一性。文中基于个体间 PPG 信号的特异性,利用改进的匹配追踪(matching pursuit,MP) 稀疏分解算法对不同个体的 PPG 信号进行分解表示,以此来提取个体 PPG 信号 20 个特征值,然后结合 PPG 信号的 1 个时域特征值,组成 21 个融合特征,最后利用决策树分类算法建立分类模型进行分类识别。 该方法直接以 PPG 信号的单个周期波形作为分解对象,不需要对波形进行复杂的变换处理,降低了特征提取的运算复杂性;在过完备原子库上,通过提取的特征可以最大程度地还原 PPG 信号,提高了特征提取的准确性。 最终实验证明,提出的基于 PPG 信号稀疏分解和机器学习的身份识别方法,识别率可以达到 98. 3% 。
Abstract:
As the inherent physiological signal in human body,the photo plethysmo graph (PPG) contains countless pathological and biological information. There is big difference between PPG signals in different human? bodies which makes it confidential and unique.Based on the specialty of individual PPG signals,we expound on the application of matching pursuit (MP) sparsely coding individual PPG signals which extracts 20 matrix eigenvalues of individual PPG signals. Then we explain how these matrix eigenvalues and one TD eigenvalues constitute 21 integrated characteristics. Lastly we illustrate how the decision tree method is employed to build a classification model for identification. This method directly uses the single periodic waveform of the PPG signal as the decomposition object,and does not require complex transformation processing on the waveform,which reduces the computational complexity of feature extraction. On the over-complete dictionary,the PPG can be restored to the greatest extent through the extracted features and the method improves the accuracy of feature extraction. Finally,the experiment has shown that the identification rate can reach 98. 3% based on the identification technique through PPG sparse coding and machine learning proposed.

相似文献/References:

[1]王蓓 张欣 刘洪.基于稀疏序列的图像去噪方法及应用[J].计算机技术与发展,2011,(03):113.
 WANG Bei,ZHANG Xin,LIU Hong.Image Denoising Based on Sparse Sequences and Its Application[J].,2011,(09):113.

更新日期/Last Update: 2021-09-10