[1]王 艳,彭 治,杜永萍.融合评分矩阵和评论文本的深度学习推荐模型[J].计算机技术与发展,2021,31(08):13-18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 003]
 WANG Yan,PENG Zhi,DU Yong-ping.A Deep Learning Recommendation Model Combining Rating Matrix and Review Text[J].,2021,31(08):13-18.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 003]
点击复制

融合评分矩阵和评论文本的深度学习推荐模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年08期
页码:
13-18
栏目:
大数据分析与挖掘
出版日期:
2021-08-10

文章信息/Info

Title:
A Deep Learning Recommendation Model Combining Rating Matrix and Review Text
文章编号:
1673-629X(2021)08-0013-06
作者:
王 艳彭 治杜永萍
北京工业大学 信息学部,北京 100124
Author(s):
WANG YanPENG ZhiDU Yong-ping
Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China
关键词:
推荐系统评论文本评分矩阵注意力机制深度学习
Keywords:
recommendation systemreview textrating matrixattention mechanismdeep learning
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 08. 003
摘要:
用户对项目评分数据的稀疏性是影响推荐质量的主要因素之一,提出了融合评分数据和评论文本的深度学习模型,通过引入辅助信息缓解评分数据稀疏性的影响。 利用评论文本可以获取用户的偏好信息和项目特征,而评分数据中又包含了用户和项目之间的潜在关联。 现有的融合模型对评分数据的处理大多数都是采用矩阵分解方法,为了更好地利用评分数据中的有效信息,文中利用卷积神经网络处理评论文本,并引入注意力机制提取评论信息中具有代表性的评论,从而更好地表征用户偏好和项目特征。 利用深度神经网络处理评分数据提取其中的深度特征,将特征进行融合来预测出用户对项目的评分。 文中在 Amazon 数据集上进行验证,以均方误差 MSE 作为评价指标,结果表明所提出的模型优于多个优秀的基线模型。
Abstract:
The sparsity of user rating data is one of the main factors affecting recommendation quality. A deep learning model combining rating data and comment text is proposed to mitigate the impact of rating data sparsity by introducing auxiliary information. The review text can be used to obtain the user’s preference information and item characteristics,and the rating data contains the potential association between the user and the item. Most of the existing fusion models deal with rating data by using matrix factorization methods. In order to make better use of the effective information in the rating data,the convolutional neural network is used to process the comment text,and the attention mechanism is introduced to extract the representative comments from the comment information,so as to better characterize the user preferences and project characteristics. The deep neural network is used to process the score data to extract the deep features which are fused to predict the user’s score on the item. It is verified on the Amazon data set with the mean square error (MSE) as the evaluation index. The results show that the proposed model is better than many excellent baseline models.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(08):67.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(08):182.
[3]赵鹏 蔡庆生 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,(01):4.
 ZHAO Peng,CAI Qing-sheng,WANG Qing-yi.A Novel Representation of User Profile in Document Recommendation System[J].,2007,(08):4.
[4]高静 应吉康.基于人工免疫系统的推荐系统[J].计算机技术与发展,2007,(05):180.
 GAO Jing,YING Ji-kang.A Recommendation System Based on Artificial Immune System[J].,2007,(08):180.
[5]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(08):70.
[6]华铨平.基于FNN的家纺产品个性化推荐系统的研究[J].计算机技术与发展,2011,(09):183.
 HUA Quan-ping.Research on Personalized Recommendation System of Textile Products Used by Family Based on FNN[J].,2011,(08):183.
[7]马言春 彭志平.基于市场机制的云服务管理研究[J].计算机技术与发展,2012,(03):214.
 MA Yan-chun,PENG Zhi-ping.Research on Cloud Service Management Based on Market Mechanism[J].,2012,(08):214.
[8]刘厚良.网络协同戏剧中个性化戏剧资源推荐系统[J].计算机技术与发展,2012,(08):25.
 LIU Hou-liang.Personalized Drama Resource Recommendation System in Cooperative Play[J].,2012,(08):25.
[9]陆晓敏 崇志宏 陈国庆.基于本体的商品推荐方法[J].计算机技术与发展,2012,(10):10.
 LU Xiao-min,CHONG Zhi-hong,CHEN Guo-qing.Product Recommending Method Based on Ontology[J].,2012,(08):10.
[10]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(08):66.

更新日期/Last Update: 2021-08-10