[1]任珈仪,王友国*,柴 允,等.社交网络上理性者交互的群组传播谣言模型[J].计算机技术与发展,2021,31(07):105-112.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 018]
 REN Jia-yi,WANG You-guo*,CHAI Yun,et al.A Rumor Spreading Model Considering Group Propagation andRational Interaction in Social Networks[J].,2021,31(07):105-112.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 018]
点击复制

社交网络上理性者交互的群组传播谣言模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年07期
页码:
105-112
栏目:
网络与安全
出版日期:
2021-07-10

文章信息/Info

Title:
A Rumor Spreading Model Considering Group Propagation andRational Interaction in Social Networks
文章编号:
1673-629X(2021)07-0105-08
作者:
任珈仪1王友国1*柴 允2李 硕2
1. 南京邮电大学 理学院,江苏 南京 210023;
2. 南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
REN Jia-yi1WANG You-guo1*CHAI Yun2LI Shuo2
1. School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;
2. School of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications, Nanjing 210003,China
关键词:
社交网络理性者交互群组传播谣言传播模型Monte Carlo 仿真
Keywords:
social networkrational interactiongroup propagationrumor spreading modelMonte Carlo simulation
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 07. 018
摘要:
社交网络已经成为信息交流的重要媒介,直接影响谣言传播的速度和范围,因此研究谣言传播机制对谣言传播规律理解具有十分重要的意义。 考虑到关于少数不相信谣言的理性者对谣言传播影响的研究还很少,社交网络群组成员通过群组共享和传播信息方式对谣言传播的影响大,在均匀网络和非均匀网络上构建了理性者交互群组传播谣言传播模型。 利用微分动力学方法和下一代矩阵理论给出模型的无谣言平衡点和基本再生数。 文中首先使用数值仿真验证模型的正确性,然后通过 Monte Carlo 方法在 ER,WS,BA,Facebook 网络上分别模拟真实情况下未知者、理性者以及传播者的动态变化。 仿真结果表明,当谣言逐渐消失时,4 种网络中的未知者密度和理性者密度均能趋于稳定;BA 网络和 Facebook网络谣言传播速度和消失速度快于 ER 网络和 WS 网络。 更大规模的群组能够增加谣言传播影响范围。 更可信的理性者显著降低了网络谣言的传播时间和传播者密度峰值。
Abstract:
Social networks have become an important information media, resulting in the speed and range of rumor propagation.Therefore,it is of great significance to study the rumor spreading mechanism to understand the rumor spreading rules well. Considering few attentions to the influences of rational people who do not blindly faith in rumors,and members of social network groups through group sharing and propagation during the spreading of rumors, a rumor spreading model considering group propagation and rational interaction in homogeneous networks and heterogeneous networks is developed. The differential dynamic method and the next generation matrix theory are exploited to calculate rumor free equilibrium and basic influence number of the model. Numerical simulation is conducted to verify the proposed model,and the Monte Carlo method is then used to simulate the dynamic changes of the ignorant,the rational person and spreaders under real-world applications in the ER,WS,BA and Facebook networks. The simulation shows that both of the density of the ignorant and the rational in the four networks can reach stabilization under the condition that the rumor gradually disappearing,and the rumor in the BA and Facebook networks spread and disappear faster than that in the ER and WS networks. Theory and simulation analysis demonstrates that larger groups can enhance the influence range of rumor propagation and more credible rational people can significantly reduce the time and range of rumors propagation

相似文献/References:

[1]李桃陶,周斌,王忠振. 基于社交网络的图数据挖掘应用研究[J].计算机技术与发展,2014,24(10):6.
 LI Tao-tao,ZHOU Bin,WANG Zhong-zhen. Research on Graph Data Mining Application Based on Social Network[J].,2014,24(07):6.
[2]张付霞,蒋朝惠. 基于DSNPP算法的社交网络隐私保护方法[J].计算机技术与发展,2015,25(08):152.
 ZHANG Fu-xia,JIANG Chao-hui. Privacy-preserving Approach in Social Networks Based on DSNPP Algorithm[J].,2015,25(07):152.
[3]陈思憬,骆冰清,孙知信.基于混合好友路径信任度的社交好友推荐算法[J].计算机技术与发展,2018,28(02):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
 CHEN Si-jing,LUO Bing-qing,SUN Zhixin.Social Friend Recommendation Algorithm Based on Trust of Paths between Mixed Friends[J].,2018,28(07):74.[doi:10.3969/j.issn.1673-629X.2018.02.017]
[4]李梦洁,邵曦.基于文本属性的微博用户相似度研究[J].计算机技术与发展,2018,28(05):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
 LI Meng-jie,SHAO Xi. Research on Micro-blog User Similarity Based on Text Similarity[J].,2018,28(07):17.[doi:10.3969/j.issn.1673-629X.2018.05.005]
[5]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(07):31.
[6]余莎莎[],王友国[],朱亮[]. 基于SIR社交网络中商业谣言传播研究[J].计算机技术与发展,2016,26(11):195.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Research on Online Business Rumors Transmission Based on an Improved SIR Model[J].,2016,26(07):195.
[7]余莎莎[],王友国[],朱亮[]. 基于网络博弈论的谣言扩散建模研究[J].计算机技术与发展,2017,27(04):6.
 YU Sha-sha[],WANG You-guo[],ZHU Liang[]. Investigation on Rumor Diffusion Modeling with Network Game Theory[J].,2017,27(07):6.
[8]付明明,余莎莎,应志领. 在线社交网络的双谣言模型研究[J].计算机技术与发展,2017,27(09):53.
 FU Ming-ming,YU Sha-sha,YING Zhi-ling. Research on Double Rumor Model in Online Social Network[J].,2017,27(07):53.
[9]李旗旗,徐敏. 社交网络中的链路预测方法改进[J].计算机技术与发展,2017,27(11):37.
 LI Qi-qi,XU Min. Improvement of Link Prediction Method in Social Networks[J].,2017,27(07):37.
[10]王冰玉,吴振宇,沈苏彬.一种社交网络的增量社区检测算法及实现优化[J].计算机技术与发展,2018,28(10):64.[doi:10.3969/ j. issn.1673-629X.2018.10.013]
 WANG Bing-yu,WU Zhen-yu,SHEN Su-bin.An Incremental Community Detection Algorithm for Social Networks and Its Optimization[J].,2018,28(07):64.[doi:10.3969/ j. issn.1673-629X.2018.10.013]

更新日期/Last Update: 2021-07-10