[1]李 昭,彭小红,谢仕义*,等.海洋资源大数据系统中缺陷多步预测方法[J].计算机技术与发展,2021,31(06):81-87.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 015]
 LI Zhao,PENG Xiao-hong,XIE Shi-yi*,et al.Multiple Steps for Predicting Number of Defects in MarineResources Big Data System[J].,2021,31(06):81-87.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 015]
点击复制

海洋资源大数据系统中缺陷多步预测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年06期
页码:
81-87
栏目:
系统工程
出版日期:
2021-06-10

文章信息/Info

Title:
Multiple Steps for Predicting Number of Defects in MarineResources Big Data System
文章编号:
1673-629X(2021)06-0081-07
作者:
李 昭12 彭小红12 谢仕义12* 梁春林12 赵 一12 蔡莉华12
1. 南方海洋科学与工程广东省实验室(湛江) 南海资源大数据中心,广东 湛江 524013;
2. 广东海洋大学 数学与计算机学院,广东 湛江 524088
Author(s):
LI Zhao12 PENG Xiao-hong12 XIE Shi-yi12* LIANG Chun-lin12 ZHAO Yi12 CAI Li-hua12
1. Marine Resources Big Data Center of South China Sea,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) ,Zhanjiang 524013,China;
2. School of Mathematics and Computer,Guangdong Ocean University,Zhanjiang 524088,China
关键词:
软件缺陷预测SMOTE 技术支持向量机回归建模多步预测
Keywords:
software defects predictionSMOTEsupport vector machineregression modelingmulti-step prediction
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 06. 015
摘要:
软件缺陷预测是提升系统质量的有效途径,也是影响软件组件中缺陷检测与修复效率的关键因素。 海洋资源大数据系统属于典型的软件密集型系统,在该系统的软件质量保障环节,针对缺陷预测中训练数据不平衡以及单一回归技术对有缺陷组件缺陷数预测的支持能力不足的现状,从两方面提升组件缺陷数预测的效能:提出采用 SMOTE 技术构建均衡样本数据集,对不均衡的样本数据集中有缺陷组件进行过采样,兼顾不同类别样本占比,提升预测的准确性;提出一种支持先分类后回归的缺陷数多步预测方法,利用支持向量机对组件进行分类,筛除分类结果中无缺陷组件,采用回归技术建立组件缺陷数预测模型,有效实现组件缺陷数多步预测,进一步提升预测准确性。 通过开源数据集完成实验评估,结果表明多步预测方法的准确性优于单一使用回归技术的预测方法,多步预测方法具有较高的总体效能和实用性。
Abstract:
Software defects prediction is an effective way to improve system quality,but also a key factor affecting? ?the effectiveness of defect detection and repair. The marine resources big data system is a typical software-intensive system. In the software quality assurance of the system,the efficiency of component defect number prediction is improved from two aspects in view of the imbalance of training data in defect prediction and the insufficient supporting ability of single regression technology to the defect number prediction of defective components. Construction of balanced sample data set based on SMOTE is proposed,which over samples the defective components to weigh the proportion of samples belong to different categories,further to improve the accuracy of prediction. A multi - step prediction approach of defects is built to further improve the accuracy of prediction,which firstly utilizes SVM to classify components,then filters out the non-defective components in the results,with regression techniques to construct prediction model of component defects number.The evaluation of effectiveness is conducted based on the open source data sets, which shows that the accuracy of the multi-step prediction has outperforms the prediction just using regression technique,with high overall efficiency and practicality.

相似文献/References:

[1]陆海洋[],荆晓远[],董西伟[],等. 基于代价敏感学习的软件缺陷预测方法[J].计算机技术与发展,2015,25(11):58.
 LU Hai-yang[],JING Xiao-yuan[],DONG Xi-wei[],et al. Software Defect Prediction Based on Cost-sensitive Learning[J].,2015,25(06):58.
[2]史作婷,吴 迪,荆晓远,等.类不平衡稀疏重构度量学习软件缺陷预测[J].计算机技术与发展,2018,28(06):125.[doi:10.3969/ j. issn.1673-629X.2018.06.028]
 SHI Zuo-ting,WU Di,JING Xiao-yuan,et al.Prediction of Defect of Class-imbalance Sparse Reconstruction Metric Learning Software[J].,2018,28(06):125.[doi:10.3969/ j. issn.1673-629X.2018.06.028]
[3]王晴[],荆晓远[][],朱阳平[],等. 基于局部稀疏重构度量学习的软件缺陷预测[J].计算机技术与发展,2016,26(11):54.
 WANG Qing[],JING Xiao-yuan[][],ZHU Yang-ping[],et al. Software Defect Prediction of Metric Learning Based on Local Sparse Reconstruction[J].,2016,26(06):54.
[4]张志武[],荆晓远[][],吴飞[]. 基于非负稀疏图的协同训练软件缺陷预测[J].计算机技术与发展,2017,27(07):38.
 ZHANG Zhi-wu[],JING Xiao-yuan[] [],WU Fei[]. Defect Prediction of Co-training Software with Non-negative Sparse Graph[J].,2017,27(06):38.
[5]史雪静,吴 飞,荆晓远.基于改进 MDS 的软件缺陷预测[J].计算机技术与发展,2017,27(12):20.[doi:10.3969/ j. issn.1673-629X.2017.12.005]
 SHI Xue-jing,WU Fei,JING Xiao-yuan.Software Defect Prediction Based on Improved MDS[J].,2017,27(06):20.[doi:10.3969/ j. issn.1673-629X.2017.12.005]
[6]娄丰鹏,吴迪,荆晓远,等.增加度量元的迁移学习跨项目软件缺陷预测[J].计算机技术与发展,2018,28(07):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
 LOU Feng-peng,WU Di,JING Xiao-yuan,et al.Cross-project Software Defect Prediction Based on Transfer Learning with Metrics[J].,2018,28(06):103.[doi:10.3969/ j. issn.1673-629X.2018.07.022]
[7]张洋洋,荆晓远,吴飞.基于迁移学习的跨项目软件缺陷预测[J].计算机技术与发展,2018,28(12):82.[doi:10.3969/j. issn.1673-629X.2018.12.018]
 ZHANG Yangyang,JING Xiaoyuan,WU Fei.Cross-project Software Defect Prediction Based on Transfer Learning[J].,2018,28(06):82.[doi:10.3969/j. issn.1673-629X.2018.12.018]
[8]陆子豪,荆晓远.基于改进 SMOTE 的半监督极限学习机缺陷预测[J].计算机技术与发展,2021,31(12):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 004]
 LU Zi-hao,JING Xiao-yuan.Semi-supervised Extreme Learning Machine Based on Improved SMOTE for Software Defect Prediction[J].,2021,31(06):21.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 004]
[9]郭 峰,和萌萌.集成学习融合依赖度的软件缺陷数量预测方法[J].计算机技术与发展,2023,33(06):95.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 015]
 GUO Feng,HE Meng-meng.Software Defect Quantity Prediction of Ensemble Learning Fusion Dependency[J].,2023,33(06):95.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 015]

更新日期/Last Update: 2021-06-10